Confined Palladium Nanocrystals within Covalent Organic Framework-Intercalated MXene Nanoarchitectures toward Highly Efficient Methanol Electrooxidation

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-03-03 DOI:10.1021/acs.chemmater.4c02659
Lan Yue, Quanguo Jiang, Le Ma, Yanan Li, Lu Yang, Jian Zhang, Haiyan He, Huajie Huang
{"title":"Confined Palladium Nanocrystals within Covalent Organic Framework-Intercalated MXene Nanoarchitectures toward Highly Efficient Methanol Electrooxidation","authors":"Lan Yue, Quanguo Jiang, Le Ma, Yanan Li, Lu Yang, Jian Zhang, Haiyan He, Huajie Huang","doi":"10.1021/acs.chemmater.4c02659","DOIUrl":null,"url":null,"abstract":"The rational design of high-performance electrocatalysts toward the methanol oxidation reaction plays a noticeable role in the progress of stimulating the industrial development of direct methanol fuel cells. In this study, ultrafine palladium nanocrystals are <i>in situ</i> confined within the hydrazone-linked covalent organic framework (COF-42)-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene nanoarchitectures (Pd/COF-MX) through a facile and robust stereoconstruction strategy. The existence of hydrangea-shaped COF-42 with abundant N species makes it possible to optimize the coordination environments for Pd nanocrystals to facilitate their size confinement and homogeneous dispersion, while the MXene nanosheets afford strong electronic interactions and contemporaneously reduce the overall charge-transfer resistance of the hybrid catalyst. As a result, the emerging Pd/COF-MX nanoarchitectures demonstrate a preferable catalytic methanol electrooxidation performance with an extensive electrochemically active surface area, superior mass activity, and dependable long-term stability, significantly outperforming the conventional Pd/carbon black, Pd/carbon nanotube, Pd/reduced graphene oxide, and Pd/MXene catalysts. Density functional theory simulation additionally discloses that the functionalization of COF-42 enables a stronger atomic interaction with the Pd component, which induces an obvious left shift of its d-band center and leads to a weaker adsorption ability toward the CO molecule.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"46 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02659","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of high-performance electrocatalysts toward the methanol oxidation reaction plays a noticeable role in the progress of stimulating the industrial development of direct methanol fuel cells. In this study, ultrafine palladium nanocrystals are in situ confined within the hydrazone-linked covalent organic framework (COF-42)-intercalated Ti3C2Tx MXene nanoarchitectures (Pd/COF-MX) through a facile and robust stereoconstruction strategy. The existence of hydrangea-shaped COF-42 with abundant N species makes it possible to optimize the coordination environments for Pd nanocrystals to facilitate their size confinement and homogeneous dispersion, while the MXene nanosheets afford strong electronic interactions and contemporaneously reduce the overall charge-transfer resistance of the hybrid catalyst. As a result, the emerging Pd/COF-MX nanoarchitectures demonstrate a preferable catalytic methanol electrooxidation performance with an extensive electrochemically active surface area, superior mass activity, and dependable long-term stability, significantly outperforming the conventional Pd/carbon black, Pd/carbon nanotube, Pd/reduced graphene oxide, and Pd/MXene catalysts. Density functional theory simulation additionally discloses that the functionalization of COF-42 enables a stronger atomic interaction with the Pd component, which induces an obvious left shift of its d-band center and leads to a weaker adsorption ability toward the CO molecule.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共价有机框架内的致密钯纳米晶体--掺杂二甲苯的纳米结构--实现高效甲醇电氧化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Metal-Free Nanozyme-Hydrogel Enabled by Conductive Polymer Nanofibers for Multimodal Antibacterial Therapy Twist-Induced Dimensional Crossover and Topological Phase Transitions in Bismuthene Quasicrystals Confined Palladium Nanocrystals within Covalent Organic Framework-Intercalated MXene Nanoarchitectures toward Highly Efficient Methanol Electrooxidation Cation-Driven Vibrational Hierarchy in NaCdX (X = As, Sb) Thermoelectrics: From Static Insulation to Rattling-Like Dissipation Synthesis, Stability, and Magnetic Properties of Antiperovskite Co3PdN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1