{"title":"Machine-Learning-Assisted Investigation on Benign Ion Migration in Metal Halide Perovskites","authors":"Ning-Jing Hao, Rui Dai, Chuan-Jia Tong","doi":"10.1021/acs.jpclett.5c00376","DOIUrl":null,"url":null,"abstract":"Defect-assisted ion migration is one of the important issues that results in instability and non-radiative losses in hybrid organic–inorganic metal halide perovskite solar cells. In this work, based on the deep potential (DP) model, a long-time-scale molecular dynamics (MD) simulation has been employed to capture the interstitial-assisted iodine migration process. The results indicate that, when interstitial iodine (I<sub>i</sub>) begins to migrate, the serious structural distortion becomes mild, weakening the electron–vibration interaction. The deep trap state induced by the iodine trimer undergoes a “deep–shallow–deep” dynamic process, which ultimately leads to an improvement of the carrier lifetime during the interstitial-assisted iodine migration process. Our work confirms that different dynamic processes are strongly correlated in halide perovskites and demonstrates that ion migration, considered to be detrimental, can become benign in a particular case. The reported results provide new fundamental insight to improve the efficiency of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite solar cells.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"6 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00376","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Defect-assisted ion migration is one of the important issues that results in instability and non-radiative losses in hybrid organic–inorganic metal halide perovskite solar cells. In this work, based on the deep potential (DP) model, a long-time-scale molecular dynamics (MD) simulation has been employed to capture the interstitial-assisted iodine migration process. The results indicate that, when interstitial iodine (Ii) begins to migrate, the serious structural distortion becomes mild, weakening the electron–vibration interaction. The deep trap state induced by the iodine trimer undergoes a “deep–shallow–deep” dynamic process, which ultimately leads to an improvement of the carrier lifetime during the interstitial-assisted iodine migration process. Our work confirms that different dynamic processes are strongly correlated in halide perovskites and demonstrates that ion migration, considered to be detrimental, can become benign in a particular case. The reported results provide new fundamental insight to improve the efficiency of CH3NH3PbI3 perovskite solar cells.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.