Tailoring Activation Intermediates of CO2 Initiates C–N Coupling for Highly Selective Urea Electrosynthesis

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-04 DOI:10.1021/jacs.5c00583
Chao Zhao, Yu Jin, Jingkang Yuan, Qilin Hou, He Li, Xiaoqing Yan, Honghui Ou, Guidong Yang
{"title":"Tailoring Activation Intermediates of CO2 Initiates C–N Coupling for Highly Selective Urea Electrosynthesis","authors":"Chao Zhao, Yu Jin, Jingkang Yuan, Qilin Hou, He Li, Xiaoqing Yan, Honghui Ou, Guidong Yang","doi":"10.1021/jacs.5c00583","DOIUrl":null,"url":null,"abstract":"Electrocatalyzed reduction of CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> to synthesize urea is a highly desirable, but challenging reaction. The bottleneck of this reaction is the C–N coupling of CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> reduction intermediates. In particular, the uncertainty of CO<sub>2</sub> multielectron reduction intermediates severely affects the selectivity and activity of C–N coupling processes involving multiple electron and proton transfers. Here, we present a novel tandem catalyst with two compatible single-atom active sites of Au and Cu on red phosphorus (RP-AuCu) that efficiently converts CO<sub>2</sub> and NO<sub>3</sub><sup>–</sup> to urea. Experimental and theoretical prediction results confirmed that the active center of Au on red phosphorus promotes electron transfer between CO<sub>2</sub> molecules and red phosphorus, thereby regulating CO<sub>2</sub> activation intermediates to produce electrophilic *COOH. In addition, the active center of Cu on red phosphorus can enhance the electrophilic attack of *COOH species on *NH<sub>2</sub>, thus promoting the selective formation of C–N bonds. Consequently, RP-AuCu exhibited a urea yield of 22.9 mmol g<sub>cat.</sub><sup>–1</sup> h<sup>–1</sup> and a Faraday efficiency of 88.5% (−0.6 V<sub>RHE</sub>), representing one of the highest levels of electrocatalytic urea synthesis. This work deepens the understanding of the C–N coupling mechanism and provides an interesting catalyst design approach for the efficient and sustainable production of C–N compounds.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"35 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalyzed reduction of CO2 and NO3 to synthesize urea is a highly desirable, but challenging reaction. The bottleneck of this reaction is the C–N coupling of CO2 and NO3 reduction intermediates. In particular, the uncertainty of CO2 multielectron reduction intermediates severely affects the selectivity and activity of C–N coupling processes involving multiple electron and proton transfers. Here, we present a novel tandem catalyst with two compatible single-atom active sites of Au and Cu on red phosphorus (RP-AuCu) that efficiently converts CO2 and NO3 to urea. Experimental and theoretical prediction results confirmed that the active center of Au on red phosphorus promotes electron transfer between CO2 molecules and red phosphorus, thereby regulating CO2 activation intermediates to produce electrophilic *COOH. In addition, the active center of Cu on red phosphorus can enhance the electrophilic attack of *COOH species on *NH2, thus promoting the selective formation of C–N bonds. Consequently, RP-AuCu exhibited a urea yield of 22.9 mmol gcat.–1 h–1 and a Faraday efficiency of 88.5% (−0.6 VRHE), representing one of the highest levels of electrocatalytic urea synthesis. This work deepens the understanding of the C–N coupling mechanism and provides an interesting catalyst design approach for the efficient and sustainable production of C–N compounds.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裁剪CO2激活中间体引发高选择性尿素电合成的C-N偶联
电催化还原CO2和NO3 -合成尿素是一个非常理想的反应,但具有挑战性。该反应的瓶颈是CO2和NO3 -还原中间体的C-N偶联。特别是,CO2多电子还原中间体的不确定性严重影响了涉及多个电子和质子转移的C-N耦合过程的选择性和活性。在此,我们提出了一种新的串联催化剂(RP-AuCu),它具有红磷上Au和Cu两个相容的单原子活性位点,可以有效地将CO2和NO3 -转化为尿素。实验和理论预测结果证实,Au在红磷上的活性中心促进CO2分子与红磷之间的电子转移,从而调节CO2活化中间体产生亲电性*COOH。此外,红磷上Cu的活性中心可以增强*COOH对*NH2的亲电性攻击,从而促进C-N键的选择性形成。结果表明,RP-AuCu的尿素产量为22.9 mmol gcat。-1 h-1和法拉第效率为88.5%(−0.6 VRHE),代表了最高水平的电催化尿素合成之一。这项工作加深了对碳氮偶联机理的理解,为高效、可持续地生产碳氮化合物提供了一种有趣的催化剂设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Gold-Catalyzed Synthesis of sp3-Rich Nortricyclanes from Norbornenes. Li1+xTaOxF6–x Oxyfluoride Solid Electrolytes with Amorphization-Driven Enhancement of Ion Conduction Channels for 5 V All-Solid-State Batteries Cancer Metastasis Blockage by Exosome-Neutrophil Nanocoupler Flavoaffinins, Elusive Cellulose-Binding Natural Products from an Anaerobic Bacterium Measuring Sodium Transport in Cells with Nuclear Magnetic Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1