Enhanced Osteogenic Differentiation via Collagen and BMP-2 Mimetic Peptide Conjugation to β-TCP Scaffolds Using a Cold Atmospheric Plasma-Assisted Strategy.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-03-03 DOI:10.1021/acsabm.5c00029
Günnur Pulat, Eda Bilgiç, Utku Kürşat Ercan, Ozan Karaman
{"title":"Enhanced Osteogenic Differentiation via Collagen and BMP-2 Mimetic Peptide Conjugation to β-TCP Scaffolds Using a Cold Atmospheric Plasma-Assisted Strategy.","authors":"Günnur Pulat, Eda Bilgiç, Utku Kürşat Ercan, Ozan Karaman","doi":"10.1021/acsabm.5c00029","DOIUrl":null,"url":null,"abstract":"<p><p>Bone defects arising from trauma, disease, or surgical intervention represent significant challenges. Developing effective bone tissue engineering strategies to address these issues and promote repair is crucial. β-Tricalcium phosphate (β-TCP) has emerged as a promising synthetic graft due to its porous, degradable structure and excellent biocompatibility. However, the lack of biological cues in β-TCP limits its functionality, requiring different surface modification strategies. Bone morphogenetic protein-2 mimetic peptide (BMP; NSVNSKIPKACCVPTELSAI) and collagen mimetic peptide (CMP; GTPGPQGIAGQRGVV) have a known significant therapeutic potential due to their ability to enhance cell attachment and osteogenic differentiation. Herein, a peptide functionalization strategy for β-TCP scaffolds was introduced. Briefly, β-TCP was treated with cold atmospheric plasma (CAP) to create functional hydroxyl groups on the surface of the β-TCP. Subsequently, peptides were conjugated by using a three-step method: (1) silanization with APTES, (2) EDC activation, and (3) peptide conjugation. The successful surface modification with CAP and peptide conjugation was confirmed via XRD, FTIR, and Raman analysis. Furthermore, the effects of BMP and CMP peptides on osteogenic differentiation after CAP treatment were investigated in human mesenchymal stem cells (hMSCs). Both β-TCP/BMP and β-TCP/CMP scaffolds demonstrated excellent biocompatibility with hMSCs, enhancing cell proliferation and promoting osteogenic differentiation. Remarkably, β-TCP/CMP showed better results in terms of proliferation and differentiation compared with β-TCP/BMP. These findings highlight the clinical potential of peptide-functionalized β-TCP scaffolds for bone tissue engineering while also providing a promising methodology for β-TCP functionalization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Bone defects arising from trauma, disease, or surgical intervention represent significant challenges. Developing effective bone tissue engineering strategies to address these issues and promote repair is crucial. β-Tricalcium phosphate (β-TCP) has emerged as a promising synthetic graft due to its porous, degradable structure and excellent biocompatibility. However, the lack of biological cues in β-TCP limits its functionality, requiring different surface modification strategies. Bone morphogenetic protein-2 mimetic peptide (BMP; NSVNSKIPKACCVPTELSAI) and collagen mimetic peptide (CMP; GTPGPQGIAGQRGVV) have a known significant therapeutic potential due to their ability to enhance cell attachment and osteogenic differentiation. Herein, a peptide functionalization strategy for β-TCP scaffolds was introduced. Briefly, β-TCP was treated with cold atmospheric plasma (CAP) to create functional hydroxyl groups on the surface of the β-TCP. Subsequently, peptides were conjugated by using a three-step method: (1) silanization with APTES, (2) EDC activation, and (3) peptide conjugation. The successful surface modification with CAP and peptide conjugation was confirmed via XRD, FTIR, and Raman analysis. Furthermore, the effects of BMP and CMP peptides on osteogenic differentiation after CAP treatment were investigated in human mesenchymal stem cells (hMSCs). Both β-TCP/BMP and β-TCP/CMP scaffolds demonstrated excellent biocompatibility with hMSCs, enhancing cell proliferation and promoting osteogenic differentiation. Remarkably, β-TCP/CMP showed better results in terms of proliferation and differentiation compared with β-TCP/BMP. These findings highlight the clinical potential of peptide-functionalized β-TCP scaffolds for bone tissue engineering while also providing a promising methodology for β-TCP functionalization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Iron Oxide Nanoparticles as Enhancers for Radiotherapy of Tumors. Transparent Biomaterial-Based Nonvolatile Bioelectronic Memory with Excellent Endurance. Enhanced Osteogenic Differentiation via Collagen and BMP-2 Mimetic Peptide Conjugation to β-TCP Scaffolds Using a Cold Atmospheric Plasma-Assisted Strategy. Reliability of STOP-Bang questionnaire and pulse oximetry as predictors of OSA - a retrospective study. Effect of adenoid hypertrophy and adenoidectomy on bite force in children: Twelve month follow-up, case-control study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1