Genetic evidence for the effects of glucokinase activation on frailty-related outcomes: A Mendelian randomisation study.

IF 5.4 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Diabetes, Obesity & Metabolism Pub Date : 2025-03-04 DOI:10.1111/dom.16312
Rong Hua, Mai Shi, Elaine Chow, Aimin Yang, Yin Ting Cheung
{"title":"Genetic evidence for the effects of glucokinase activation on frailty-related outcomes: A Mendelian randomisation study.","authors":"Rong Hua, Mai Shi, Elaine Chow, Aimin Yang, Yin Ting Cheung","doi":"10.1111/dom.16312","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>We aimed to use the Mendelian randomisation (MR) design to investigate the potential causal effects of glucokinase (GK) activation on frailty-related outcomes and to explore the potential mediating effects of metabolic and inflammatory biomarkers.</p><p><strong>Materials and methods: </strong>Seventeen independent single-nucleotide polymorphisms (SNPs) located within the GCK gene and significantly correlated with the glycated haemoglobin (HbA<sub>1c</sub>) level were used as genetic proxies for the effect of GK activation. We employed two-sample MR analysis to assess the relationship between genetically proxied GK activation and multifactorial frailty-related outcomes (frailty index, grip strength, walking pace, appendicular lean mass [ALM] and telomere length) We also explored the potential mediating effects using two-step MR.</p><p><strong>Results: </strong>Genetically proxied GK activation was significantly associated with a lower frailty index (beta: -0.161 per 1% decrease in HbA<sub>1c</sub> level due to GK activation, 95% confidence interval: -0.282 to -0.040, false discovery rate-adjusted p = 0.011). Additionally, GK activation showed significant associations with increased grip strength, higher ALM, faster walking pace and longer telomere length. GK activation also demonstrated a significant indirect effect on total grip strength and telomere length by reducing C-reactive protein levels (proportion of mediation: 6.79% to 8.21%).</p><p><strong>Conclusion: </strong>Our study provides genetic evidence supporting the causal effects of GK activation on lowering the risk of frailty. These findings suggest that GK activators (GKAs) may aid in the management of frailty and sarcopaenia in people with diabetes; however, future randomized controlled trials are necessary to validate these results and establish their clinical applicability.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.16312","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: We aimed to use the Mendelian randomisation (MR) design to investigate the potential causal effects of glucokinase (GK) activation on frailty-related outcomes and to explore the potential mediating effects of metabolic and inflammatory biomarkers.

Materials and methods: Seventeen independent single-nucleotide polymorphisms (SNPs) located within the GCK gene and significantly correlated with the glycated haemoglobin (HbA1c) level were used as genetic proxies for the effect of GK activation. We employed two-sample MR analysis to assess the relationship between genetically proxied GK activation and multifactorial frailty-related outcomes (frailty index, grip strength, walking pace, appendicular lean mass [ALM] and telomere length) We also explored the potential mediating effects using two-step MR.

Results: Genetically proxied GK activation was significantly associated with a lower frailty index (beta: -0.161 per 1% decrease in HbA1c level due to GK activation, 95% confidence interval: -0.282 to -0.040, false discovery rate-adjusted p = 0.011). Additionally, GK activation showed significant associations with increased grip strength, higher ALM, faster walking pace and longer telomere length. GK activation also demonstrated a significant indirect effect on total grip strength and telomere length by reducing C-reactive protein levels (proportion of mediation: 6.79% to 8.21%).

Conclusion: Our study provides genetic evidence supporting the causal effects of GK activation on lowering the risk of frailty. These findings suggest that GK activators (GKAs) may aid in the management of frailty and sarcopaenia in people with diabetes; however, future randomized controlled trials are necessary to validate these results and establish their clinical applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes, Obesity & Metabolism
Diabetes, Obesity & Metabolism 医学-内分泌学与代谢
CiteScore
10.90
自引率
6.90%
发文量
319
审稿时长
3-8 weeks
期刊介绍: Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.
期刊最新文献
Impact of healthy lifestyles on the risk of metabolic dysfunction-associated steatotic liver disease among adults with comorbid hypertension and diabetes: Novel insight from a largely middle-aged and elderly cohort in South China. ISM1 regulates white adipose tissue remodelling by dampening adipocyte differentiation and enhancing inflammation. The high hourly overnight variability of insulin requirements as an explanation for the superiority of automated insulin delivery systems. Front Cover Diabetes, Obesity and Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1