Dissecting genomes of multiple yak populations: unveiling ancestry and high-altitude adaptation through whole-genome resequencing analysis.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-03 DOI:10.1186/s12864-025-11387-2
Sheikh Firdous Ahmad, Munish Gangwar, Amit Kumar, Amod Kumar, Mahesh Shivanand Dige, Girish Kumar Jha, Gyanendra Kumar Gaur, Triveni Dutt
{"title":"Dissecting genomes of multiple yak populations: unveiling ancestry and high-altitude adaptation through whole-genome resequencing analysis.","authors":"Sheikh Firdous Ahmad, Munish Gangwar, Amit Kumar, Amod Kumar, Mahesh Shivanand Dige, Girish Kumar Jha, Gyanendra Kumar Gaur, Triveni Dutt","doi":"10.1186/s12864-025-11387-2","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was undertaken to elucidate the population structure and differentiation of Indian yak from Chinese and wild cohorts on genome-wide scale by identifying the selection sweeps and genomic basis of their adaptation across different comparisons while analyzing whole genome sequencing (WGS) data using latest bioinformatics tools. The study included 105 individuals from three distinct yak populations i.e., Indian yak (n = 29); Chinese yak (n = 61) and wild yak (n = 15), hypothesized to be related along the evolutionary timescale. Efficient variant calling and quality control in GATK and PLINK programs resulted in around 1 million (1,002,970) high-quality (LD-independent) SNPs with an average genotyping rate of 96.55%. The PCA, ADMIXTURE and TREEMIX analysis revealed stratification of the yak groups into three distinct clusters. The empirical distribution pattern of minor allele frequency (MAF) of SNPs on genome-wide scale was also elucidated for three yak cohorts revealing unique distribution across five different bins. The selection signature analysis revealed candidate genes that are important for the adaptation of Indian yak against harsh environmental conditions in their habitats. Under iHS analysis, several genes were identified to be under selection pressure in Indian yak including ABCA12, EXOC1, JUNB, KLF1, PRDX2, NANOS3, RFX1, RFX2, and CACNG7. On the other hand, across population analysis revealed the genes like NR2F2, OSBPL10, CIDEC, WFIKKN2, ADCY, THSD7A, ADGRB3, TRPC1, VASH2, and ABHD5 to be part of selective sweeps under these comparisons. A total of 53 genes were found common between intra- and inter-population selection signature analysis of Indian yak. Notably, the genes harbouring the SNPs under selection pressure were significant for adaptation traits including lipidogenesis, energy metabolism, thermogenesis, hair follicle formation, oxidation-reduction reactions, hypoxia and reproduction. These genes may be evaluated as candidate genes for livestock adaptation to harsh environmental conditions and to further the research and application in the present era of climate change.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"214"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11387-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study was undertaken to elucidate the population structure and differentiation of Indian yak from Chinese and wild cohorts on genome-wide scale by identifying the selection sweeps and genomic basis of their adaptation across different comparisons while analyzing whole genome sequencing (WGS) data using latest bioinformatics tools. The study included 105 individuals from three distinct yak populations i.e., Indian yak (n = 29); Chinese yak (n = 61) and wild yak (n = 15), hypothesized to be related along the evolutionary timescale. Efficient variant calling and quality control in GATK and PLINK programs resulted in around 1 million (1,002,970) high-quality (LD-independent) SNPs with an average genotyping rate of 96.55%. The PCA, ADMIXTURE and TREEMIX analysis revealed stratification of the yak groups into three distinct clusters. The empirical distribution pattern of minor allele frequency (MAF) of SNPs on genome-wide scale was also elucidated for three yak cohorts revealing unique distribution across five different bins. The selection signature analysis revealed candidate genes that are important for the adaptation of Indian yak against harsh environmental conditions in their habitats. Under iHS analysis, several genes were identified to be under selection pressure in Indian yak including ABCA12, EXOC1, JUNB, KLF1, PRDX2, NANOS3, RFX1, RFX2, and CACNG7. On the other hand, across population analysis revealed the genes like NR2F2, OSBPL10, CIDEC, WFIKKN2, ADCY, THSD7A, ADGRB3, TRPC1, VASH2, and ABHD5 to be part of selective sweeps under these comparisons. A total of 53 genes were found common between intra- and inter-population selection signature analysis of Indian yak. Notably, the genes harbouring the SNPs under selection pressure were significant for adaptation traits including lipidogenesis, energy metabolism, thermogenesis, hair follicle formation, oxidation-reduction reactions, hypoxia and reproduction. These genes may be evaluated as candidate genes for livestock adaptation to harsh environmental conditions and to further the research and application in the present era of climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
High-resolution genetic and physical mapping reveals a peanut spotted wilt disease resistance locus, PSWDR-1, to Tomato spotted wilt virus (TSWV), within a recombination cold-spot on chromosome A01. A high-resolution model of gene expression during Gossypium hirsutum (cotton) fiber development. The case-only design is a powerful approach to detect interactions but should be used with caution. The roles of a MiRNA and its targeted methyltransferase 3 in carotenoid accumulation in adductor muscles of QN orange scallops. Analysis and identification of mitochondria-related genes associated with age-related hearing loss.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1