Finerenone Ameliorates High Glucose-Induced Podocytes Epithelial-Mesenchymal Transition Through the Regulation of Krüppel-Like Factor 5 in Diabetic Nephropathy.

IF 2.8 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy Pub Date : 2025-02-27 eCollection Date: 2025-01-01 DOI:10.2147/DMSO.S503133
Jianqiang Shu, Dandan Chen, Wenzhen Chen, Xinyu Zhang, Simeng Wang, Nannan Chong, Zhikang Sun, Qinglian Wang, Jingshu Sun, Ying Xu
{"title":"Finerenone Ameliorates High Glucose-Induced Podocytes Epithelial-Mesenchymal Transition Through the Regulation of Krüppel-Like Factor 5 in Diabetic Nephropathy.","authors":"Jianqiang Shu, Dandan Chen, Wenzhen Chen, Xinyu Zhang, Simeng Wang, Nannan Chong, Zhikang Sun, Qinglian Wang, Jingshu Sun, Ying Xu","doi":"10.2147/DMSO.S503133","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diabetic nephropathy (DN) could impair the function of the glomerular filtration barrier by damaging the podocytes. Extant research has demonstrated that aldosterone plays a crucial role in this progression. Finerenone is a novel, high-selective mineralocorticoid receptor antagonist that has been demonstrated to be efficacious in renal protection in DN patients, albeit with an unclear underlying mechanism.</p><p><strong>Methods: </strong>Podocytes were stimulated with RPMI 1640 medium containing different concentrations of glucose and treated with finerenone to evaluate the protective effect of finerenone on podocytes in high glucose environment. Intraperitoneal injection of STZ was used to induce diabetic nephropathy rats and intragastric administration with finerenone or vehicles, and the changes of renal function, renal pathological changes and renal tissue protein expression were assayed.</p><p><strong>Results: </strong>Cell experiment showed that high glucose could induce epithelial-mesenchymal transition (EMT). After finerenone treatment, we accessed the EMT-related protein and found EMT was reversed. Besides, the cell migration capacity and cytoskeleton were also ameliorated. To further explore the mechanism, we found that finerenone could upregulate the expression of Krüppel-like factor 5 (KLF5) which was downregulated in a high glucose environment. After the silence of KLF5 in the presence of finerenone, the rescue experiment showed the protective function of finerenone is counteracted by KLF5. In animal experiment, after the treatment of finerenone, the level of blood creatinine decreased compared with the DN group while blood urea nitrogen (BUN) and potassium showed no significant difference. The pathological alterations of the treatment group also got ameliorated. Finerenone could normalize the level of EMT-related protein, nephrin, and KLF5 of kidney tissue in DN rats.</p><p><strong>Conclusion: </strong>Our results suggest that finerenone could alleviate high glucose-induced podocyte EMT via regulating KLF5. Further investigation is warranted to elucidate the precise underlying mechanism.</p>","PeriodicalId":11116,"journal":{"name":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","volume":"18 ","pages":"637-651"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DMSO.S503133","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Diabetic nephropathy (DN) could impair the function of the glomerular filtration barrier by damaging the podocytes. Extant research has demonstrated that aldosterone plays a crucial role in this progression. Finerenone is a novel, high-selective mineralocorticoid receptor antagonist that has been demonstrated to be efficacious in renal protection in DN patients, albeit with an unclear underlying mechanism.

Methods: Podocytes were stimulated with RPMI 1640 medium containing different concentrations of glucose and treated with finerenone to evaluate the protective effect of finerenone on podocytes in high glucose environment. Intraperitoneal injection of STZ was used to induce diabetic nephropathy rats and intragastric administration with finerenone or vehicles, and the changes of renal function, renal pathological changes and renal tissue protein expression were assayed.

Results: Cell experiment showed that high glucose could induce epithelial-mesenchymal transition (EMT). After finerenone treatment, we accessed the EMT-related protein and found EMT was reversed. Besides, the cell migration capacity and cytoskeleton were also ameliorated. To further explore the mechanism, we found that finerenone could upregulate the expression of Krüppel-like factor 5 (KLF5) which was downregulated in a high glucose environment. After the silence of KLF5 in the presence of finerenone, the rescue experiment showed the protective function of finerenone is counteracted by KLF5. In animal experiment, after the treatment of finerenone, the level of blood creatinine decreased compared with the DN group while blood urea nitrogen (BUN) and potassium showed no significant difference. The pathological alterations of the treatment group also got ameliorated. Finerenone could normalize the level of EMT-related protein, nephrin, and KLF5 of kidney tissue in DN rats.

Conclusion: Our results suggest that finerenone could alleviate high glucose-induced podocyte EMT via regulating KLF5. Further investigation is warranted to elucidate the precise underlying mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
5.90
自引率
6.10%
发文量
431
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal. The journal is committed to the rapid publication of the latest laboratory and clinical findings in the fields of diabetes, metabolic syndrome and obesity research. Original research, review, case reports, hypothesis formation, expert opinion and commentaries are all considered for publication.
期刊最新文献
Nomogram for Predicting Early AVF Failure in Elderly Diabetic Patients: Methodological and Clinical Considerations [Letter]. Serum Soluble Asialoglycoprotein Receptor 1: A Potential Predictor Marker Linked to Type 2 Diabetes Mellitus, Demonstrating Positive Correlation With High Sensitive C-Reactive Protein. Finerenone Ameliorates High Glucose-Induced Podocytes Epithelial-Mesenchymal Transition Through the Regulation of Krüppel-Like Factor 5 in Diabetic Nephropathy. Association of KCNJ11 E23K/rs5219 Gene Polymorphism with Type 2 Diabetes and Diabetes-Related Cardiovascular Disease. Pituitary-Thyroid Hormones and Related Indices in Euthyroid Type 2 Diabetes: Association With Thyroid Nodules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1