STMN1 regulates the stemness of gastric cancer cells by binding to HN1L to activate the STAT3 signaling pathway.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Discover. Oncology Pub Date : 2025-03-04 DOI:10.1007/s12672-025-01879-8
Chunyang Wei, Xing Zhang, Hao Li, Jianzhong Gu, Fei Xue, Wenna Xie, Gang Ji
{"title":"STMN1 regulates the stemness of gastric cancer cells by binding to HN1L to activate the STAT3 signaling pathway.","authors":"Chunyang Wei, Xing Zhang, Hao Li, Jianzhong Gu, Fei Xue, Wenna Xie, Gang Ji","doi":"10.1007/s12672-025-01879-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>STMN1 is highly expressed in gastric cancer (GC) tissues and the aim of this study was to investigate the role of STMN1 in GC cell stemness.</p><p><strong>Methods: </strong>Analysis of the expression and correlation of STMN1 and its target genes in GC through bioinformatics. Construction of interference plasmids for STMN1 and transfection into GC cells. Sphere formation assay was conducted to detect stem cell sphere-forming ability. WB analysis was performed to detect the expression of stemness genes CD133, ALDH1, CD44, SOX2, Nanog, and STAT3-related proteins. Additionally, CCK-8 assay and TUNEL staining were used to assess GC cell sensitivity to cisplatin (DDP). Construction of a xenograft mouse model to detect the in vivo tumorigenic ability of GC cells. Immunoprecipitation (IP) experiment was conducted to validate the binding of STMN1 and HN1L in GC cells. Overexpression plasmids of HN1L were used for mechanism validation.</p><p><strong>Results: </strong>STMN1 and its target HN1L were highly expressed in GC tissues and cells, and were associated with a poor prognosis in GC. Interfering with STMN1 significantly reduced the self-renewal ability of GC cells, downregulated the expression of CD133, ALDH1, CD44, SOX2, Nanog, p-STAT3 and PD-L1. Interfering with STMN1 increased the sensitivity of GC cells to DDP and promoted apoptosis. IP experiments demonstrate that STMN1 and HN1L combine in GC cells. Overexpression of HN1L significantly reversed the effects of Si-STMN1 on GC cells. In vivo experiments demonstrate that the addition of DDP or interference with STMN1 reduced tumor size and weight, and downregulated the expression of CD133, KI67, HN1L, p-STAT3, and PD-L1 in tumor tissues. The combined use of DPP and Si-STMN1 had a more significant effect.</p><p><strong>Conclusion: </strong>STMN1 regulates GC cell stemness by binding HN1L to activate the HN1L/STAT3/ PD-L1 signaling pathway.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"263"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-01879-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: STMN1 is highly expressed in gastric cancer (GC) tissues and the aim of this study was to investigate the role of STMN1 in GC cell stemness.

Methods: Analysis of the expression and correlation of STMN1 and its target genes in GC through bioinformatics. Construction of interference plasmids for STMN1 and transfection into GC cells. Sphere formation assay was conducted to detect stem cell sphere-forming ability. WB analysis was performed to detect the expression of stemness genes CD133, ALDH1, CD44, SOX2, Nanog, and STAT3-related proteins. Additionally, CCK-8 assay and TUNEL staining were used to assess GC cell sensitivity to cisplatin (DDP). Construction of a xenograft mouse model to detect the in vivo tumorigenic ability of GC cells. Immunoprecipitation (IP) experiment was conducted to validate the binding of STMN1 and HN1L in GC cells. Overexpression plasmids of HN1L were used for mechanism validation.

Results: STMN1 and its target HN1L were highly expressed in GC tissues and cells, and were associated with a poor prognosis in GC. Interfering with STMN1 significantly reduced the self-renewal ability of GC cells, downregulated the expression of CD133, ALDH1, CD44, SOX2, Nanog, p-STAT3 and PD-L1. Interfering with STMN1 increased the sensitivity of GC cells to DDP and promoted apoptosis. IP experiments demonstrate that STMN1 and HN1L combine in GC cells. Overexpression of HN1L significantly reversed the effects of Si-STMN1 on GC cells. In vivo experiments demonstrate that the addition of DDP or interference with STMN1 reduced tumor size and weight, and downregulated the expression of CD133, KI67, HN1L, p-STAT3, and PD-L1 in tumor tissues. The combined use of DPP and Si-STMN1 had a more significant effect.

Conclusion: STMN1 regulates GC cell stemness by binding HN1L to activate the HN1L/STAT3/ PD-L1 signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
期刊最新文献
A preliminary follow-up study on irreversible electroporation therapy in older patients with prostate cancer. CAT and CXCL8 are crucial cofactors for the progression of nonalcoholic steatohepatitis to hepatocellular carcinoma, the immune infiltration and prognosis of hepatocellular carcinoma. Comprehensive analysis of TMEM9 in human tumors. Deciphering the metabolic landscape of colorectal cancer through the lens of AhR-mediated intestinal inflammation. Multi-gene panel sequencing reveals the relationship between driver gene mutation and clinical characteristics in lung adenocarcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1