Marcella Conning-Rowland, Chew W Cheng, Oliver Brown, Marilena Giannoudi, Eylem Levelt, Lee D Roberts, Kathryn J Griffin, Richard M Cubbon
{"title":"Application of CIBERSORTx and BayesPrism to deconvolution of bulk RNA-seq data from human myocardium and skeletal muscle.","authors":"Marcella Conning-Rowland, Chew W Cheng, Oliver Brown, Marilena Giannoudi, Eylem Levelt, Lee D Roberts, Kathryn J Griffin, Richard M Cubbon","doi":"10.1016/j.heliyon.2025.e42499","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-sequencing (RNA-seq) is an important tool to explore molecular mechanisms of disease. Technological advances mean this can be performed at the single-cell level, but the large sample sizes needed in clinical studies are currently prohibitively expensive and complex. Deconvolution of bulk RNA-seq offers an opportunity to bridge this gap by defining the cell lineage composition of samples. This approach is widely used in immunology studies, but currently there are no validated pipelines for researchers analysing human myocardium or skeletal muscle. Here, we describe the application and <i>in silico</i> validation of two pipelines to deconvolute human right atrium, left ventricle and skeletal muscle bulk RNA-seq data. Specifically, we have defined the major cell lineages of these tissues using single cell/nucleus RNA-seq data from the Heart Cell Atlas, which are then applied during deconvolution using the CIBERSORTx or BayesPrism deconvolution packages. Both pipelines gave robust estimates of the proportion of all major cell lineages in these tissues. We demonstrate their value in defining age- and sex-differences in tissue composition using bulk RNA-seq data from the GTEx consortium. Our validated pipelines can be rapidly applied by researchers working with existing or novel bulk RNA-seq of myocardium or skeletal muscle to gain novel insights.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 4","pages":"e42499"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42499","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
RNA-sequencing (RNA-seq) is an important tool to explore molecular mechanisms of disease. Technological advances mean this can be performed at the single-cell level, but the large sample sizes needed in clinical studies are currently prohibitively expensive and complex. Deconvolution of bulk RNA-seq offers an opportunity to bridge this gap by defining the cell lineage composition of samples. This approach is widely used in immunology studies, but currently there are no validated pipelines for researchers analysing human myocardium or skeletal muscle. Here, we describe the application and in silico validation of two pipelines to deconvolute human right atrium, left ventricle and skeletal muscle bulk RNA-seq data. Specifically, we have defined the major cell lineages of these tissues using single cell/nucleus RNA-seq data from the Heart Cell Atlas, which are then applied during deconvolution using the CIBERSORTx or BayesPrism deconvolution packages. Both pipelines gave robust estimates of the proportion of all major cell lineages in these tissues. We demonstrate their value in defining age- and sex-differences in tissue composition using bulk RNA-seq data from the GTEx consortium. Our validated pipelines can be rapidly applied by researchers working with existing or novel bulk RNA-seq of myocardium or skeletal muscle to gain novel insights.
期刊介绍:
Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.