Xue-Yan Zhang, Hua Lv, Yi-Yang Zhang, Cheng-Yu Huang, Feng Zhu, Hui-Mei Shen, Bei-Bei Wang, Juan Zeng, Gao Hu
{"title":"Long-term seasonal forecasting model for the trans-regional migration of brown planthopper in Eastern China.","authors":"Xue-Yan Zhang, Hua Lv, Yi-Yang Zhang, Cheng-Yu Huang, Feng Zhu, Hui-Mei Shen, Bei-Bei Wang, Juan Zeng, Gao Hu","doi":"10.1111/1744-7917.70013","DOIUrl":null,"url":null,"abstract":"<p><p>The brown planthopper (BPH), Nilaparvata lugens (Stål), is the most important rice pest in China and other East Asian countries. Identifying their source areas and predicting their population dynamics are crucial for managing migratory pests. Northern South China (NSC) is one of the key regions for northward BPH migration and a direct source of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV). Hence, this study aimed to explore the environmental drivers affecting the population dynamics of BPH in NSC, and develop models for predicting the immigration levels in the LYRV. Initially, the BPH immigrants in NSC were identified to have mostly originated from northern and north-central Vietnam, Laos, and northeastern Thailand (15°-22° N) in May by using a trajectory analysis approach. The population model showed that immigration size of BPH in NSC in May can be predicted by the temperature observed in February over these source areas combined with the probability of BPH from south-central Vietnam (their principal overwintering region) immigrating to these source areas in March. Subsequently, the immigration size of BPH in NSC in May combined with the onset time of the South China Sea Summer Monsoon (a sign of rain belt movement and arrival of the flood season in China), can be used to predict the immigration level of BPH in the LYRV in July. These 2 prediction models could forecast nearly 2 months in advance, allowing time for effective control measures to be implemented.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.70013","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is the most important rice pest in China and other East Asian countries. Identifying their source areas and predicting their population dynamics are crucial for managing migratory pests. Northern South China (NSC) is one of the key regions for northward BPH migration and a direct source of BPH in the key rice-growing area of the Lower Yangtze River Valley (LYRV). Hence, this study aimed to explore the environmental drivers affecting the population dynamics of BPH in NSC, and develop models for predicting the immigration levels in the LYRV. Initially, the BPH immigrants in NSC were identified to have mostly originated from northern and north-central Vietnam, Laos, and northeastern Thailand (15°-22° N) in May by using a trajectory analysis approach. The population model showed that immigration size of BPH in NSC in May can be predicted by the temperature observed in February over these source areas combined with the probability of BPH from south-central Vietnam (their principal overwintering region) immigrating to these source areas in March. Subsequently, the immigration size of BPH in NSC in May combined with the onset time of the South China Sea Summer Monsoon (a sign of rain belt movement and arrival of the flood season in China), can be used to predict the immigration level of BPH in the LYRV in July. These 2 prediction models could forecast nearly 2 months in advance, allowing time for effective control measures to be implemented.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.