Isolating Astrocyte-Derived Extracellular Vesicles From Urine.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY International Journal of Nanomedicine Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S492381
Xin-Hui Xie, Mian-Mian Chen, Shu-Xian Xu, Junhua Mei, Qing Yang, Chao Wang, Honggang Lyu, Qian Gong, Zhongchun Liu
{"title":"Isolating Astrocyte-Derived Extracellular Vesicles From Urine.","authors":"Xin-Hui Xie, Mian-Mian Chen, Shu-Xian Xu, Junhua Mei, Qing Yang, Chao Wang, Honggang Lyu, Qian Gong, Zhongchun Liu","doi":"10.2147/IJN.S492381","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Brain-derived extracellular vesicles (BDEVs) can cross the blood-brain barrier and enter the periphery. Therefore, quantifying and analyzing peripherally circulating BDEVs offer a promising approach to directly obtain a window into central nervous system (CNS) pathobiology in vivo. Rapidly evolving CNS diseases require high-frequency sampling, but daily venipuncture of human subjects is highly invasive and usually unfeasible.</p><p><strong>Methods: </strong>To address this challenge, here we present a novel method for isolating astrocyte-derived extracellular vesicles from urine (uADEVs), combining urine concentration, ultracentrifugation to isolate total EVs, and then glutamate-aspartate transporter (GLAST) EV isolation using an anti-GLAST antibody.</p><p><strong>Results: </strong>The identity of these GLAST+EVs as uADEVs was confirmed by transmission electron microscopy, nanoparticle tracking analysis, western blotting, and assessment of astrocyte-related neurotrophins.</p><p><strong>Conclusions: </strong>Leveraging the convenience and availability of urine samples, the non-invasive uADEV approach provides a novel tool that allows high-frequency sampling to investigate rapidly evolving CNS diseases.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"2475-2484"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S492381","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Brain-derived extracellular vesicles (BDEVs) can cross the blood-brain barrier and enter the periphery. Therefore, quantifying and analyzing peripherally circulating BDEVs offer a promising approach to directly obtain a window into central nervous system (CNS) pathobiology in vivo. Rapidly evolving CNS diseases require high-frequency sampling, but daily venipuncture of human subjects is highly invasive and usually unfeasible.

Methods: To address this challenge, here we present a novel method for isolating astrocyte-derived extracellular vesicles from urine (uADEVs), combining urine concentration, ultracentrifugation to isolate total EVs, and then glutamate-aspartate transporter (GLAST) EV isolation using an anti-GLAST antibody.

Results: The identity of these GLAST+EVs as uADEVs was confirmed by transmission electron microscopy, nanoparticle tracking analysis, western blotting, and assessment of astrocyte-related neurotrophins.

Conclusions: Leveraging the convenience and availability of urine samples, the non-invasive uADEV approach provides a novel tool that allows high-frequency sampling to investigate rapidly evolving CNS diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从尿液中分离星形胶质细胞衍生的细胞外囊泡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
期刊最新文献
Injured Cardiac Tissue-Targeted Delivery of TGFβ1 siRNA by FAP Aptamer-Functionalized Extracellular Vesicles Promotes Cardiac Repair. Evaluation of Luteolin Nanosuspensions on Pharmacokinetics of Atorvastatin: Drug-Drug Interactions Using Rat Models. Gold Nanoparticles Functionalized With 5-Amino-2-Mercaptobenzimidazole: A Promising Antimicrobial Strategy Against Carbapenem-Resistant Gram-Negative Bacteria. Response to Article "Regenerative Potential Nanomedicine of Adipocyte Stem Cell-Derived Exosomes in Senescent Skin Tissue" [Letter]. Safety, Efficacy and Bio-Distribution Analysis of Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells for Effective Treatment of Bronchopulmonary Dysplasia by Intranasal Administration in Mice Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1