Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis.

IF 13.6 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2025-03-03 DOI:10.1172/JCI186291
Baoyu He, Rou Zhao, Baogui Zhang, Hongli Pan, Jilan Liu, Lunhua Huang, Yingying Wei, Dong Yang, Jing Liang, Mingyi Wang, Mingsheng Zhao, Sen Wang, Fengyun Dong, Junfeng Zhang, Yanhua Zhang, Xu Zhang, Xiao Zhang, Guanjun Dong, Huabao Xiong, Qingli Bie, Bin Zhang
{"title":"Endothelial OX40 activation facilitates tumor cell escape from T cell surveillance through S1P/YAP-mediated angiogenesis.","authors":"Baoyu He, Rou Zhao, Baogui Zhang, Hongli Pan, Jilan Liu, Lunhua Huang, Yingying Wei, Dong Yang, Jing Liang, Mingyi Wang, Mingsheng Zhao, Sen Wang, Fengyun Dong, Junfeng Zhang, Yanhua Zhang, Xu Zhang, Xiao Zhang, Guanjun Dong, Huabao Xiong, Qingli Bie, Bin Zhang","doi":"10.1172/JCI186291","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the complexity of the tumor microenvironment is vital for improving immunotherapy outcomes. Here, we report that the T cell costimulatory molecule OX40 was highly expressed in tumor endothelial cells (ECs) and was negatively associated with the prognosis of patients, which is irrelevant to T cell activation. Analysis of conditional OX40 loss- and gain-of-function transgenic mice showed that OX40 signal in ECs counteracted the antitumor effects produced in T cells by promoting angiogenesis. Mechanistically, leucine-rich repeat-containing GPCR5 (Lgr5+ ) cancer stem cells induced OX40 expression in tumor ECs via EGF/STAT3 signaling. Activated OX40 interacted with Spns lysolipid transporter 2 (Spns2), obstructing the export of sphingosine 1-phosphate (S1P) and resulting in S1P intracellular accumulation. Increased S1P directly bound to Yes 1-associated protein (YAP), disrupting its interaction with large tumor suppressor kinase 1 (LATS1) and promoting YAP nuclear translocation. Finally, the YAP inhibitor verteporfin enhanced the antitumor effects of the OX40 agonist. Together, these findings reveal an unexpected protumor role of OX40 in ECs, highlighting the effect of nonimmune cell compartments on immunotherapy.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 5","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI186291","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the complexity of the tumor microenvironment is vital for improving immunotherapy outcomes. Here, we report that the T cell costimulatory molecule OX40 was highly expressed in tumor endothelial cells (ECs) and was negatively associated with the prognosis of patients, which is irrelevant to T cell activation. Analysis of conditional OX40 loss- and gain-of-function transgenic mice showed that OX40 signal in ECs counteracted the antitumor effects produced in T cells by promoting angiogenesis. Mechanistically, leucine-rich repeat-containing GPCR5 (Lgr5+ ) cancer stem cells induced OX40 expression in tumor ECs via EGF/STAT3 signaling. Activated OX40 interacted with Spns lysolipid transporter 2 (Spns2), obstructing the export of sphingosine 1-phosphate (S1P) and resulting in S1P intracellular accumulation. Increased S1P directly bound to Yes 1-associated protein (YAP), disrupting its interaction with large tumor suppressor kinase 1 (LATS1) and promoting YAP nuclear translocation. Finally, the YAP inhibitor verteporfin enhanced the antitumor effects of the OX40 agonist. Together, these findings reveal an unexpected protumor role of OX40 in ECs, highlighting the effect of nonimmune cell compartments on immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内皮 OX40 激活可通过 S1P/YAP 介导的血管生成促进肿瘤细胞摆脱 T 细胞的监控。
了解肿瘤微环境的复杂性对改善免疫治疗效果至关重要。在这里,我们报道了T细胞共刺激分子OX40在肿瘤内皮细胞(ECs)中高表达,并且与患者预后呈负相关,这与T细胞活化无关。对条件性OX40缺失和功能获得转基因小鼠的分析表明,ECs中的OX40信号通过促进血管生成来抵消T细胞产生的抗肿瘤作用。机制上,富含亮氨酸重复序列的GPCR5 (Lgr5+)癌症干细胞通过EGF/STAT3信号传导诱导OX40在肿瘤ECs中的表达。活化的OX40与Spns溶脂转运蛋白2 (Spns2)相互作用,阻碍鞘氨醇1-磷酸(S1P)的输出,导致S1P在细胞内积累。增加S1P直接结合Yes 1相关蛋白(YAP),破坏其与大肿瘤抑制激酶1 (LATS1)的相互作用,促进YAP核易位。最后,YAP抑制剂维替波芬增强了OX40激动剂的抗肿瘤作用。总之,这些发现揭示了OX40在ECs中意想不到的肿瘤作用,突出了非免疫细胞区室在免疫治疗中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mutant p53 promotes clonal hematopoiesis through generating a chronic inflammatory microenvironment. Cooperative ETS transcription factors are required for lymphatic endothelial cell integrity and resilience. UTX coordinates TCF1 and STAT3 to control progenitor CD8+ T cell fate in autoimmune diabetes. Genetic disruption of mitochondrial dynamics and stasis leads to liver injury and tumorigenesis. Corrigendum to A CLN6-CLN8 complex recruits lysosomal enzymes at the ER for Golgi transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1