An Approach to Enhance the Solubility of an Atypical Antipsychotic Drug, Aripiprazole: Design, Characterization, and Evaluation of Arabinoxylan-Based Nanoparticles.

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Nanotechnology, Science and Applications Pub Date : 2025-02-27 eCollection Date: 2025-01-01 DOI:10.2147/NSA.S502002
Mehwish Sikander, Ume Ruqia Tulain, Nadia Shamshad Malik, Arshad Mahmood, Mohammed S Alqahtani, Alia Erum, Muhammad Tariq Khan
{"title":"An Approach to Enhance the Solubility of an Atypical Antipsychotic Drug, Aripiprazole: Design, Characterization, and Evaluation of Arabinoxylan-Based Nanoparticles.","authors":"Mehwish Sikander, Ume Ruqia Tulain, Nadia Shamshad Malik, Arshad Mahmood, Mohammed S Alqahtani, Alia Erum, Muhammad Tariq Khan","doi":"10.2147/NSA.S502002","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Natural polymers have emerged as versatile and sustainable alternatives to synthetic polymers in pharmaceutical and biomedical applications. This study focuses on the extraction of arabinoxylan (AX) from maize husk and its potential as a promising excipient to enhance the solubility and oral bioavailability of Aripiprazole (APZ), a poorly water-soluble antipsychotic drug, offering a robust strategy for overcoming challenges associated with hydrophobic drugs.</p><p><strong>Methods: </strong>APZ-loaded AX nanoparticles were synthesized using the ionotropic gelation technique. The formulation with the highest encapsulation efficiency designated as FN4 was selected for detailed characterization. Various analytical techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC), were employed to assess the morphological, crystalline, and thermal properties of the nanoparticles. In vitro release studies were conducted on both simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8) to evaluate drug dissolution behaviour. The everted sac method was utilized to assess the permeation and transport of APZ from the AX-based nanoparticles.</p><p><strong>Results: </strong>The FN4 formulation exhibited an encapsulation efficiency of 88.9% ± 1.77%, with a particle size of 284.4 nm, a polydispersity index (PDI) of 0.346, and a zeta potential of 20.7 mV. SEM analysis revealed a uniform distribution of polyhedral-shaped nanoparticles. XRD and DSC analyses indicated that APZ was in an amorphous state within the nanoparticles. Drug release was more pronounced at pH 6.8, with the AX nanoparticles showing sustained release. The everted sac method demonstrated enhanced permeation of APZ across intestinal membranes, supporting the potential of AX nanoparticles in improving drug absorption.</p><p><strong>Discussion: </strong>The AX-based nanoparticle formulation significantly improved the solubility, pH-dependent release profile, and sustained release of APZ, offering a promising strategy to enhance the oral bioavailability of poorly soluble drugs. These findings suggest that AX nanoparticles could serve as an effective delivery system for enhancing the therapeutic potential of hydrophobic drugs like APZ.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"115-137"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S502002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Natural polymers have emerged as versatile and sustainable alternatives to synthetic polymers in pharmaceutical and biomedical applications. This study focuses on the extraction of arabinoxylan (AX) from maize husk and its potential as a promising excipient to enhance the solubility and oral bioavailability of Aripiprazole (APZ), a poorly water-soluble antipsychotic drug, offering a robust strategy for overcoming challenges associated with hydrophobic drugs.

Methods: APZ-loaded AX nanoparticles were synthesized using the ionotropic gelation technique. The formulation with the highest encapsulation efficiency designated as FN4 was selected for detailed characterization. Various analytical techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC), were employed to assess the morphological, crystalline, and thermal properties of the nanoparticles. In vitro release studies were conducted on both simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8) to evaluate drug dissolution behaviour. The everted sac method was utilized to assess the permeation and transport of APZ from the AX-based nanoparticles.

Results: The FN4 formulation exhibited an encapsulation efficiency of 88.9% ± 1.77%, with a particle size of 284.4 nm, a polydispersity index (PDI) of 0.346, and a zeta potential of 20.7 mV. SEM analysis revealed a uniform distribution of polyhedral-shaped nanoparticles. XRD and DSC analyses indicated that APZ was in an amorphous state within the nanoparticles. Drug release was more pronounced at pH 6.8, with the AX nanoparticles showing sustained release. The everted sac method demonstrated enhanced permeation of APZ across intestinal membranes, supporting the potential of AX nanoparticles in improving drug absorption.

Discussion: The AX-based nanoparticle formulation significantly improved the solubility, pH-dependent release profile, and sustained release of APZ, offering a promising strategy to enhance the oral bioavailability of poorly soluble drugs. These findings suggest that AX nanoparticles could serve as an effective delivery system for enhancing the therapeutic potential of hydrophobic drugs like APZ.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高非典型抗精神病药物阿立哌唑溶解度的方法:阿拉伯木聚糖纳米颗粒的设计、表征和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
期刊最新文献
An Approach to Enhance the Solubility of an Atypical Antipsychotic Drug, Aripiprazole: Design, Characterization, and Evaluation of Arabinoxylan-Based Nanoparticles. Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications. Enhanced Stability and Reusability of Subtilisin Carlsberg Through Immobilization on Magnetic Nanoparticles. Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa. Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1