Tengteng Zhang, Jinyu Fu, Chao Li, Ruitao Gong, Khaled A S Al-Rasheid, Naomi A Stover, Chen Shao, Ting Cheng
{"title":"Novel findings on the mitochondria in ciliates, with description of mitochondrial genomes of six representatives.","authors":"Tengteng Zhang, Jinyu Fu, Chao Li, Ruitao Gong, Khaled A S Al-Rasheid, Naomi A Stover, Chen Shao, Ting Cheng","doi":"10.1007/s42995-024-00249-7","DOIUrl":null,"url":null,"abstract":"<p><p>Determining and comparing mitochondrial genomes (mitogenomes) are essential for assessing the diversity and evolution of mitochondria. Ciliates are ancient and diverse unicellular eukaryotes, and thus are ideal models for elucidating the early evolution of mitochondria. Here, we report on six new mitogenomes of spirotrichs, a dominant ciliate group, and perform comparative analyses on 12 representative species. We show that: (1) the mitogenomes of spirotrichs are linear structures with high A+T contents (61.12-81.16%), bidirectional transcription, and extensive synteny (except for the <i>nad5</i>, <i>ccmf</i> and <i>cob</i> genes in Euplotia); (2) the non-split of NADH dehydrogenase subunit 2 gene (<i>nad2</i>) is a plesiomorphy of ciliates, whereas it has evolved into a split gene in Spirotrichea (apart from <i>Euplotes</i> taxa), Oligohymenophorea, and Armophorea; (3) the number of small subunit ribosomal proteins (rps) encoded in mitogenomes increases in the later branching classes of ciliates, whereas <i>rps8</i> shows a loss trend during the evolution of <i>Euplotes</i> taxa; (4) the mitogenomes of spirotrichs exhibit A/T codon bias at the third position, and the codon bias is mainly due to DNA mutation in oligotrichs, hypotrichs and <i>Diophrys appendiculata</i>; (5) the phylogenetic position of <i>D. appendiculata</i> is unstable and controversial based on both phylogenetic analyses and mitogenome evidence. In summary, we investigated the mitogenome diversity of spirotrichs and broadened our understanding of the evolution of mitochondria in ciliates.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00249-7.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"7 1","pages":"79-95"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00249-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining and comparing mitochondrial genomes (mitogenomes) are essential for assessing the diversity and evolution of mitochondria. Ciliates are ancient and diverse unicellular eukaryotes, and thus are ideal models for elucidating the early evolution of mitochondria. Here, we report on six new mitogenomes of spirotrichs, a dominant ciliate group, and perform comparative analyses on 12 representative species. We show that: (1) the mitogenomes of spirotrichs are linear structures with high A+T contents (61.12-81.16%), bidirectional transcription, and extensive synteny (except for the nad5, ccmf and cob genes in Euplotia); (2) the non-split of NADH dehydrogenase subunit 2 gene (nad2) is a plesiomorphy of ciliates, whereas it has evolved into a split gene in Spirotrichea (apart from Euplotes taxa), Oligohymenophorea, and Armophorea; (3) the number of small subunit ribosomal proteins (rps) encoded in mitogenomes increases in the later branching classes of ciliates, whereas rps8 shows a loss trend during the evolution of Euplotes taxa; (4) the mitogenomes of spirotrichs exhibit A/T codon bias at the third position, and the codon bias is mainly due to DNA mutation in oligotrichs, hypotrichs and Diophrys appendiculata; (5) the phylogenetic position of D. appendiculata is unstable and controversial based on both phylogenetic analyses and mitogenome evidence. In summary, we investigated the mitogenome diversity of spirotrichs and broadened our understanding of the evolution of mitochondria in ciliates.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00249-7.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.