ZigzagNetVis: Suggesting Temporal Resolutions for Graph Visualization Using Zigzag Persistence

Raphaël Tinarrage;Jean R. Ponciano;Claudio D. G. Linhares;Agma J. M. Traina;Jorge Poco
{"title":"ZigzagNetVis: Suggesting Temporal Resolutions for Graph Visualization Using Zigzag Persistence","authors":"Raphaël Tinarrage;Jean R. Ponciano;Claudio D. G. Linhares;Agma J. M. Traina;Jorge Poco","doi":"10.1109/TVCG.2025.3528197","DOIUrl":null,"url":null,"abstract":"Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time. Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties that facilitate better decision-making. In this context, selecting an appropriate <italic>temporal resolution</i> is essential for constructing and visually analyzing the layout. The choice of resolution is particularly important, especially when dealing with temporally sparse graphs. In such cases, changing the temporal resolution by grouping events (i.e., edges) from consecutive timestamps — a technique known as timeslicing — can aid in the analysis and reveal patterns that might not be discernible otherwise. However, selecting an appropriate temporal resolution is a challenging task. In this paper, we propose ZigzagNetVis, a methodology that suggests temporal resolutions potentially relevant for analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. ZigzagNetVis achieves this by leveraging zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To improve visual graph analysis, ZigzagNetVis incorporates the colored barcode, a novel timeline-based visualization inspired by persistence barcodes commonly used in TDA. We also contribute with a web-based system prototype that implements suggestion methodology and visualization tools. Finally, we demonstrate the usefulness and effectiveness of ZigzagNetVis through a usage scenario, a user study with 27 participants, and a detailed quantitative evaluation.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 10","pages":"6852-6869"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844578","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10844578/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal graphs are commonly used to represent complex systems and track the evolution of their constituents over time. Visualizing these graphs is crucial as it allows one to quickly identify anomalies, trends, patterns, and other properties that facilitate better decision-making. In this context, selecting an appropriate temporal resolution is essential for constructing and visually analyzing the layout. The choice of resolution is particularly important, especially when dealing with temporally sparse graphs. In such cases, changing the temporal resolution by grouping events (i.e., edges) from consecutive timestamps — a technique known as timeslicing — can aid in the analysis and reveal patterns that might not be discernible otherwise. However, selecting an appropriate temporal resolution is a challenging task. In this paper, we propose ZigzagNetVis, a methodology that suggests temporal resolutions potentially relevant for analyzing a given graph, i.e., resolutions that lead to substantial topological changes in the graph structure. ZigzagNetVis achieves this by leveraging zigzag persistent homology, a well-established technique from Topological Data Analysis (TDA). To improve visual graph analysis, ZigzagNetVis incorporates the colored barcode, a novel timeline-based visualization inspired by persistence barcodes commonly used in TDA. We also contribute with a web-based system prototype that implements suggestion methodology and visualization tools. Finally, we demonstrate the usefulness and effectiveness of ZigzagNetVis through a usage scenario, a user study with 27 participants, and a detailed quantitative evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZigzagNetVis:建议使用之字形持久性的图形可视化的时间分辨率。
时间图通常用于表示复杂系统并跟踪其组成部分随时间的演变。可视化这些图是至关重要的,因为它允许人们快速识别异常、趋势、模式和其他属性,从而促进更好的决策。在这种情况下,选择适当的时间分辨率对于构建和可视化分析布局至关重要。分辨率的选择尤其重要,特别是在处理时间稀疏图时。在这种情况下,通过对来自连续时间戳的事件(即边缘)进行分组来改变时间分辨率——一种称为时间切片的技术——可以帮助分析并揭示否则可能无法识别的模式。然而,选择合适的时间分辨率是一项具有挑战性的任务。在本文中,我们提出了ZigzagNetVis,这是一种方法,它提出了可能与分析给定图相关的时间分辨率,即导致图结构中实质性拓扑变化的分辨率。ZigzagNetVis通过利用zigzag持久同源性实现了这一点,这是一种来自拓扑数据分析(TDA)的成熟技术。为了改进可视化图形分析,ZigzagNetVis结合了彩色条形码,这是一种新颖的基于时间线的可视化,灵感来自于TDA中常用的持久性条形码。我们还提供了一个基于web的系统原型,实现了建议方法和可视化工具。最后,我们通过使用场景、27名参与者的用户研究和详细的定量评估来展示ZigzagNetVis的有用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynAvatar: Dynamic 3D Head Avatar Deformation With Expression Guided Gaussian Splatting. Understanding the Research-Practice Gap in Visualization Design Guidelines. QuRAFT: Enhancing Quantum Algorithm Design by Visual Linking Between Mathematical Concepts and Quantum Circuits. DanceAgent: Dance Movement Refinement With LLM Agent. Do You "Trust" This Visualization? An Inventory to Measure Trust in Visualizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1