DDF-ISM: Internal Structure Modeling of Human Head Using Probabilistic Directed Distance Field

Zhuoman Liu;Yan Luximon;Wei Lin Ng;Eric Chung
{"title":"DDF-ISM: Internal Structure Modeling of Human Head Using Probabilistic Directed Distance Field","authors":"Zhuoman Liu;Yan Luximon;Wei Lin Ng;Eric Chung","doi":"10.1109/TVCG.2025.3530484","DOIUrl":null,"url":null,"abstract":"The increasing interest surrounding 3D human heads for digital avatars and simulations has highlighted the need for accurate internal modeling rather than solely focusing on external approximations. Existing approaches rely on traditional optimization techniques applied to explicit 3D representations like point clouds and meshes, leading to computational inefficiencies and challenges in capturing local geometric features. To tackle these problems, we propose a novel modeling method called DDF-ISM. It leverages a probabilistic <italic>Directed Distance Field for Internal Structure Modeling</i>, facilitating efficient and anatomically accurate deformation of different parts of the human head. DDF-ISM comprises two key components: 1) a probabilistic DDF network for implicit representation of the target model to provide crucial local geometric information, and 2) a conditioned deformation network guided by the local geometry. Additionally, we introduce a large-scale dataset of human heads with internal structures derived from high-quality Computed Tomography (CT) scans, along with well-designed template models encompassing skull, mandible, brain, and head surface. Evaluation on this dataset showcases the superiority of our approach over existing methods, exhibiting superior performance in both modeling quality and efficiency.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 10","pages":"6767-6780"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843325/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing interest surrounding 3D human heads for digital avatars and simulations has highlighted the need for accurate internal modeling rather than solely focusing on external approximations. Existing approaches rely on traditional optimization techniques applied to explicit 3D representations like point clouds and meshes, leading to computational inefficiencies and challenges in capturing local geometric features. To tackle these problems, we propose a novel modeling method called DDF-ISM. It leverages a probabilistic Directed Distance Field for Internal Structure Modeling, facilitating efficient and anatomically accurate deformation of different parts of the human head. DDF-ISM comprises two key components: 1) a probabilistic DDF network for implicit representation of the target model to provide crucial local geometric information, and 2) a conditioned deformation network guided by the local geometry. Additionally, we introduce a large-scale dataset of human heads with internal structures derived from high-quality Computed Tomography (CT) scans, along with well-designed template models encompassing skull, mandible, brain, and head surface. Evaluation on this dataset showcases the superiority of our approach over existing methods, exhibiting superior performance in both modeling quality and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率定向距离场的人体头部内部结构建模。
围绕3D人类头部的数字化身和模拟的兴趣越来越大,这突出了对精确内部建模的需求,而不是仅仅关注外部近似。现有的方法依赖于传统的优化技术,应用于明确的3D表示,如点云和网格,导致计算效率低下,并且在捕获局部几何特征方面存在挑战。为了解决这些问题,我们提出了一种新的建模方法,称为DDF-ISM。它利用概率定向距离场进行内部结构建模,促进人体头部不同部位的高效和解剖精确变形。DDF- ism包括两个关键组成部分:1)用于隐式表示目标模型的概率DDF网络,以提供关键的局部几何信息;2)由局部几何指导的条件变形网络。此外,我们引入了一个大规模的人头数据集,其内部结构来自高质量的计算机断层扫描(CT)扫描,以及精心设计的模板模型,包括头骨、下颌骨、大脑和头部表面。对该数据集的评估显示了我们的方法比现有方法的优越性,在建模质量和效率方面都表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynAvatar: Dynamic 3D Head Avatar Deformation With Expression Guided Gaussian Splatting. Understanding the Research-Practice Gap in Visualization Design Guidelines. QuRAFT: Enhancing Quantum Algorithm Design by Visual Linking Between Mathematical Concepts and Quantum Circuits. DanceAgent: Dance Movement Refinement With LLM Agent. Do You "Trust" This Visualization? An Inventory to Measure Trust in Visualizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1