Sean M. Carney, Sandrine Grosse, Yanting Yin, Minh T. Tran, Jay H. Kalin, Edgar Jacoby, Amy Fung, Nicholas Simmons, Xiaoming Xie, Anusarka Bhaumik, Rodrigo J. Carbajo, Madison Piassek, Robyn Miller, Lili Hu, Cynthia Lemmens, Ferdinand H. Lutter, Serge Pieters, Geert Rombouts, Irene Vetrano, Daniel Oehlrich, Sonia Tomaso, Kate Lozada, Miguel Osorio Garcia, Brandon Anson, Suzanne De Bruyn, Constance Smith-Monroy, Jean-Marc Neefs, Nádia Conceição-Neto, Bart Kesteleyn, Roberto Fino, Bart Stoops, Herman van Vlijmen, Aaron N. Patrick, Xiaodi Yu, Victoria Wong, Daniel J. Krosky, Pravien Abeywickrema, Rodrigo F. Ortiz-Meoz, Stephen W. Mason, Zhinan Jin, Sujata Sharma, Tim H. M. Jonckers
{"title":"DNA-Encoded Library Screen Identifies Novel Series of Respiratory Syncytial Virus Polymerase Inhibitors","authors":"Sean M. Carney, Sandrine Grosse, Yanting Yin, Minh T. Tran, Jay H. Kalin, Edgar Jacoby, Amy Fung, Nicholas Simmons, Xiaoming Xie, Anusarka Bhaumik, Rodrigo J. Carbajo, Madison Piassek, Robyn Miller, Lili Hu, Cynthia Lemmens, Ferdinand H. Lutter, Serge Pieters, Geert Rombouts, Irene Vetrano, Daniel Oehlrich, Sonia Tomaso, Kate Lozada, Miguel Osorio Garcia, Brandon Anson, Suzanne De Bruyn, Constance Smith-Monroy, Jean-Marc Neefs, Nádia Conceição-Neto, Bart Kesteleyn, Roberto Fino, Bart Stoops, Herman van Vlijmen, Aaron N. Patrick, Xiaodi Yu, Victoria Wong, Daniel J. Krosky, Pravien Abeywickrema, Rodrigo F. Ortiz-Meoz, Stephen W. Mason, Zhinan Jin, Sujata Sharma, Tim H. M. Jonckers","doi":"10.1021/acs.jmedchem.4c02906","DOIUrl":null,"url":null,"abstract":"Respiratory syncytial virus (RSV) remains a public health burden due to unmet therapeutic needs. We recently reported the discovery of a non-nucleoside inhibitor of the RSV polymerase and characterized its binding to a novel pocket within the capping domain of the polymerase. Here, we describe our strategy to diversify the chemical matter targeting this site by screening our DNA-encoded chemical libraries, leading to the discovery of a novel and potent series of molecules that inhibits RSV polymerase’s biochemical activity, as well as its viral replication in cells. Structural analysis via cryo-EM revealed novel contacts made within the capping domain binding pocket. By leveraging these structural insights for preliminary SAR exploration, we generated analogues for which potency and metabolic stability were improved more than 60- and 40-fold, respectively, over the initial hit. This work provides a path forward for further advanced SAR exploration and development of therapeutics against RSV.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"211 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02906","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Respiratory syncytial virus (RSV) remains a public health burden due to unmet therapeutic needs. We recently reported the discovery of a non-nucleoside inhibitor of the RSV polymerase and characterized its binding to a novel pocket within the capping domain of the polymerase. Here, we describe our strategy to diversify the chemical matter targeting this site by screening our DNA-encoded chemical libraries, leading to the discovery of a novel and potent series of molecules that inhibits RSV polymerase’s biochemical activity, as well as its viral replication in cells. Structural analysis via cryo-EM revealed novel contacts made within the capping domain binding pocket. By leveraging these structural insights for preliminary SAR exploration, we generated analogues for which potency and metabolic stability were improved more than 60- and 40-fold, respectively, over the initial hit. This work provides a path forward for further advanced SAR exploration and development of therapeutics against RSV.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.