RAmbler resolves complex repeats in human Chromosomes 8, 19, and X

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genome research Pub Date : 2025-03-04 DOI:10.1101/gr.279308.124
Sakshar Chakravarty, Glennis Logsdon, Stefano Lonardi
{"title":"RAmbler resolves complex repeats in human Chromosomes 8, 19, and X","authors":"Sakshar Chakravarty, Glennis Logsdon, Stefano Lonardi","doi":"10.1101/gr.279308.124","DOIUrl":null,"url":null,"abstract":"Repetitive regions in eukaryotic genomes often contain important functional or regulatory elements. Despite significant algorithmic and technological advancements in genome sequencing and assembly over the past three decades, modern de novo assemblers still struggle to accurately reconstruct highly repetitive regions. In this work, we introduce RAmbler (Repeat Assembler), a reference-guided assembler specialized for the assembly of complex repetitive regions exclusively from PacBio HiFi reads. RAmbler (i) identifies repetitive regions by detecting unusually high coverage regions after mapping HiFi reads to the draft genome assembly, (ii) finds single-copy <em>k</em>-mers from the HiFi reads, (i.e., <em>k</em>-mers that are expected to occur only once in the genome), (iii) uses the relative location of single-copy <em>k</em>-mers to barcode each HiFi read, (iv) clusters HiFi reads based on their shared bar-codes, (v) generates contigs by assembling the reads in each cluster, and (vi) generates a consensus assembly from the overlap graph of the assembled contigs. Here we show that RAmbler can reconstruct human centromeres and other complex repeats to a quality comparable to the manually-curated telomere-to-telomere human genome assembly. Across over 250 synthetic datasets, RAmbler outperforms hifiasm, LJA, HiCANU, and Verkko across various parameters such as repeat lengths, number of repeats, heterozygosity rates and depth of sequencing.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"22 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279308.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Repetitive regions in eukaryotic genomes often contain important functional or regulatory elements. Despite significant algorithmic and technological advancements in genome sequencing and assembly over the past three decades, modern de novo assemblers still struggle to accurately reconstruct highly repetitive regions. In this work, we introduce RAmbler (Repeat Assembler), a reference-guided assembler specialized for the assembly of complex repetitive regions exclusively from PacBio HiFi reads. RAmbler (i) identifies repetitive regions by detecting unusually high coverage regions after mapping HiFi reads to the draft genome assembly, (ii) finds single-copy k-mers from the HiFi reads, (i.e., k-mers that are expected to occur only once in the genome), (iii) uses the relative location of single-copy k-mers to barcode each HiFi read, (iv) clusters HiFi reads based on their shared bar-codes, (v) generates contigs by assembling the reads in each cluster, and (vi) generates a consensus assembly from the overlap graph of the assembled contigs. Here we show that RAmbler can reconstruct human centromeres and other complex repeats to a quality comparable to the manually-curated telomere-to-telomere human genome assembly. Across over 250 synthetic datasets, RAmbler outperforms hifiasm, LJA, HiCANU, and Verkko across various parameters such as repeat lengths, number of repeats, heterozygosity rates and depth of sequencing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
期刊最新文献
Expanded methylome and quantitative trait loci detection by long-read profiling of personal DNA Integration of transcriptomics and long-read genomics prioritizes structural variants in rare disease Unraveling the hidden complexity of cancer through long-read sequencing Unexpectedly low recombination rates and presence of hotspots in termite genomes Examining dynamics of three-dimensional genome organization with multitask matrix factorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1