Interpretable multimodal transformer for prediction of molecular subtypes and grades in adult-type diffuse gliomas

IF 15.1 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2025-03-05 DOI:10.1038/s41746-025-01530-4
Yunsu Byeon, Yae Won Park, Soohyun Lee, Doohyun Park, HyungSeob Shin, Kyunghwa Han, Jong Hee Chang, Se Hoon Kim, Seung-Koo Lee, Sung Soo Ahn, Dosik Hwang
{"title":"Interpretable multimodal transformer for prediction of molecular subtypes and grades in adult-type diffuse gliomas","authors":"Yunsu Byeon, Yae Won Park, Soohyun Lee, Doohyun Park, HyungSeob Shin, Kyunghwa Han, Jong Hee Chang, Se Hoon Kim, Seung-Koo Lee, Sung Soo Ahn, Dosik Hwang","doi":"10.1038/s41746-025-01530-4","DOIUrl":null,"url":null,"abstract":"<p>Molecular subtyping and grading of adult-type diffuse gliomas are essential for treatment decisions and patient prognosis. We introduce GlioMT, an interpretable multimodal transformer that integrates imaging and clinical data to predict the molecular subtype and grade of adult-type diffuse gliomas according to the 2021 WHO classification. GlioMT is trained on multiparametric MRI data from an institutional set of 1053 patients with adult-type diffuse gliomas to predict the IDH mutation status, 1p/19q codeletion status, and tumor grade. External validation on the TCGA (200 patients) and UCSF (477 patients) shows that GlioMT outperforms conventional CNNs and visual transformers, achieving AUCs of 0.915 (TCGA) and 0.981 (UCSF) for IDH mutation, 0.854 (TCGA) and 0.806 (UCSF) for 1p/19q codeletion, and 0.862 (TCGA) and 0.960 (UCSF) for grade prediction. GlioMT enhances the reliability of clinical decision-making by offering interpretability through attention maps and contributions of imaging and clinical data.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"32 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01530-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular subtyping and grading of adult-type diffuse gliomas are essential for treatment decisions and patient prognosis. We introduce GlioMT, an interpretable multimodal transformer that integrates imaging and clinical data to predict the molecular subtype and grade of adult-type diffuse gliomas according to the 2021 WHO classification. GlioMT is trained on multiparametric MRI data from an institutional set of 1053 patients with adult-type diffuse gliomas to predict the IDH mutation status, 1p/19q codeletion status, and tumor grade. External validation on the TCGA (200 patients) and UCSF (477 patients) shows that GlioMT outperforms conventional CNNs and visual transformers, achieving AUCs of 0.915 (TCGA) and 0.981 (UCSF) for IDH mutation, 0.854 (TCGA) and 0.806 (UCSF) for 1p/19q codeletion, and 0.862 (TCGA) and 0.960 (UCSF) for grade prediction. GlioMT enhances the reliability of clinical decision-making by offering interpretability through attention maps and contributions of imaging and clinical data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释的多模态变压器用于预测成人型弥漫性胶质瘤的分子亚型和分级
成人型弥漫性胶质瘤的分子分型和分级对治疗决策和患者预后至关重要。我们推出GlioMT,这是一种可解释的多模态转换器,整合了成像和临床数据,根据2021年WHO分类预测成人型弥漫性胶质瘤的分子亚型和分级。GlioMT使用来自1053名成人型弥漫性胶质瘤患者的多参数MRI数据进行训练,以预测IDH突变状态、1p/19q编码状态和肿瘤分级。对TCGA(200例)和UCSF(477例)的外部验证表明,GlioMT优于传统cnn和视觉变形,对IDH突变的auc分别为0.915 (TCGA)和0.981 (UCSF),对1p/19q编码的auc分别为0.854 (TCGA)和0.806 (UCSF),对分级预测的auc分别为0.862 (TCGA)和0.960 (UCSF)。GlioMT通过提供可解释性,通过注意图和成像和临床数据的贡献,提高了临床决策的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Benchmarking large language model-based agent systems for clinical decision tasks BRIDGE pilot study: a bilateral regulatory investigation of data governance and exchange Empowering genetic discoveries and cardiovascular risk assessment by predicting electrocardiograms from genotype Smartphone videos are a scalable tool for gait evaluation in Parkinson’s disease Health economic simulation modeling of an AI-enabled clinical decision support system for coronary revascularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1