Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2025-03-05 DOI:10.1038/s41545-025-00440-y
Yomna Mohamed, Ahmed Elghadban, Hei I Lei, Amelie Andrea Shih, Po-Heng Lee
{"title":"Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion","authors":"Yomna Mohamed, Ahmed Elghadban, Hei I Lei, Amelie Andrea Shih, Po-Heng Lee","doi":"10.1038/s41545-025-00440-y","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion (AD) is a crucial bioenergy source widely applied in wastewater treatment. However, its efficiency improvement is hindered by complex microbial communities and sensitivity to feedstock properties. We, thus, propose a hybrid quantum-classical machine learning (Q-CML) regression algorithm using a quantum circuit learning (QCL) strategy. Combining a variational quantum circuit with a classical optimiser, this approach predicts biogas production from operational data of 18 full-scale mesophilic AD sites in the UK. Tailored for noisy intermediate-scale quantum (NISQ) devices, the low-depth QCL model outperforms conventional regression methods (<i>R</i>²: 0.53) and matches the performance of a classical multi-layer perceptron (MLP) regressor (<i>R</i>²: 0.959) with significantly fewer parameters and better scalability. Comparative analysis highlights the advantages of quantum superposition and entanglement in capturing intricate correlations in AD data. This study positions Q-CML as a cutting-edge solution for optimising AD processes, boosting energy recovery, and driving the circular economy.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"183 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00440-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic digestion (AD) is a crucial bioenergy source widely applied in wastewater treatment. However, its efficiency improvement is hindered by complex microbial communities and sensitivity to feedstock properties. We, thus, propose a hybrid quantum-classical machine learning (Q-CML) regression algorithm using a quantum circuit learning (QCL) strategy. Combining a variational quantum circuit with a classical optimiser, this approach predicts biogas production from operational data of 18 full-scale mesophilic AD sites in the UK. Tailored for noisy intermediate-scale quantum (NISQ) devices, the low-depth QCL model outperforms conventional regression methods (R²: 0.53) and matches the performance of a classical multi-layer perceptron (MLP) regressor (R²: 0.959) with significantly fewer parameters and better scalability. Comparative analysis highlights the advantages of quantum superposition and entanglement in capturing intricate correlations in AD data. This study positions Q-CML as a cutting-edge solution for optimising AD processes, boosting energy recovery, and driving the circular economy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
厌氧消化(AD)是广泛应用于废水处理的重要生物能源。然而,复杂的微生物群落和对原料特性的敏感性阻碍了其效率的提高。因此,我们提出了一种使用量子电路学习(QCL)策略的混合量子-经典机器学习(Q-CML)回归算法。这种方法将变异量子电路与经典优化器相结合,从英国 18 个全规模中温厌氧消化(AD)基地的运行数据中预测沼气产量。低深度 QCL 模型专为噪声中等规模量子(NISQ)设备量身定制,其性能优于传统回归方法(R²:0.53),并与经典多层感知器(MLP)回归器的性能(R²:0.959)相当,但参数明显更少,可扩展性更好。对比分析凸显了量子叠加和纠缠在捕捉 AD 数据中错综复杂的相关性方面的优势。这项研究将 Q-CML 定位为优化厌氧消化过程、促进能源回收和推动循环经济的尖端解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Quantum machine learning regression optimisation for full-scale sewage sludge anaerobic digestion Preparation of unsaturated MIL-101(Cr) with Lewis acid sites for the extraordinary adsorption of anionic dyes Antimicrobial resistant enteric bacteria are widely distributed among environmental water sources in Dhaka, Bangladesh Integrating livestock and aquatic plant towards mitigating antibiotic resistance transmission from swine wastewater Machine learning prediction of ammonia nitrogen adsorption on biochar with model evaluation and optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1