Theoretical Investigation of Arsenene/g-C6N6 Van Der Waals Heterojunction: Direct Z-Scheme with High Photocatalytic Efficiency

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-03-05 DOI:10.1039/d5cp00081e
Zhengdong Sun, Jia Xin Ma, Junhao Zhu, Yifei Shen, Xiao Wang, Meng Zhang, Kaiyi Zheng
{"title":"Theoretical Investigation of Arsenene/g-C6N6 Van Der Waals Heterojunction: Direct Z-Scheme with High Photocatalytic Efficiency","authors":"Zhengdong Sun, Jia Xin Ma, Junhao Zhu, Yifei Shen, Xiao Wang, Meng Zhang, Kaiyi Zheng","doi":"10.1039/d5cp00081e","DOIUrl":null,"url":null,"abstract":"With advancements in algorithms and computational power, theoretical calculations have become increasingly feasible for designing and constructing functional materials. In this study, we utilized density functional theory (DFT) to investigate the new arsenene/g-C₆N₆ van der Waals heterojunction, which forms a direct Z-scheme system with an indirect bandgap of 1.41 eV and a minimal lattice mismatch of just 1.4%. The heterojunction’s band edge positions are favorable for overall water splitting across a wide strain range (-6% to +6%) and varying pH conditions. Photocatalytic analysis reveals that the oxygen evolution reaction (OER) proceeds spontaneously under light irradiation, while the hydrogen evolution reaction (HER) requires an energy barrier of 0.47 eV, which can be further reduced to 0.2 eV under -6% compressive strain. The heterojunction also demonstrates enhanced visible light absorption, with a redshift in the absorption spectrum under biaxial strain, significantly boosting solar energy utilization. Remarkably, the heterojunction achieves a solar-to-hydrogen (STH) conversion efficiency of 47.84%, outperforming many previously reported photocatalytic materials. With a strong interfacial binding energy of -37.73 meV/Ų, confirmed by molecular dynamics simulations, its exceptional structural stability positions it as a promising candidate for experimental realization. These findings underscore the potential of the arsenene/g-C₆N₆ heterojunction as a high-performance platform for advanced photocatalytic applications.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"38 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00081e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With advancements in algorithms and computational power, theoretical calculations have become increasingly feasible for designing and constructing functional materials. In this study, we utilized density functional theory (DFT) to investigate the new arsenene/g-C₆N₆ van der Waals heterojunction, which forms a direct Z-scheme system with an indirect bandgap of 1.41 eV and a minimal lattice mismatch of just 1.4%. The heterojunction’s band edge positions are favorable for overall water splitting across a wide strain range (-6% to +6%) and varying pH conditions. Photocatalytic analysis reveals that the oxygen evolution reaction (OER) proceeds spontaneously under light irradiation, while the hydrogen evolution reaction (HER) requires an energy barrier of 0.47 eV, which can be further reduced to 0.2 eV under -6% compressive strain. The heterojunction also demonstrates enhanced visible light absorption, with a redshift in the absorption spectrum under biaxial strain, significantly boosting solar energy utilization. Remarkably, the heterojunction achieves a solar-to-hydrogen (STH) conversion efficiency of 47.84%, outperforming many previously reported photocatalytic materials. With a strong interfacial binding energy of -37.73 meV/Ų, confirmed by molecular dynamics simulations, its exceptional structural stability positions it as a promising candidate for experimental realization. These findings underscore the potential of the arsenene/g-C₆N₆ heterojunction as a high-performance platform for advanced photocatalytic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Delineating the tryptophan-galactosylamine conjugate mediated structural distortions in Aβ42 protofibril Exploring the Potential of 2D Beryllonitrene as a Lithium-Ion Battery Anode: A Theoretical Study An Investigation of Contributors to the Spin Exchange Interactions in Organic Pentacene-Radical Dyads using Quasi-Degenerate Perturbation Theory Towards the characterization of chemiosmotic flow of ionic liquid in charged nanochannels Liquid Crystals as Solid-State Templates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1