Computational Insight into Selective Hydrogenolysis over Monomeric MoOx-Modified Rh Catalysts in the Aqueous Phase

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-03-04 DOI:10.1021/acs.jpcc.4c08142
Kenshin Takei, Tatsushi Ikeda, Koki Muraoka, Yoshinao Nakagawa, Keiichi Tomishige, Akira Nakayama
{"title":"Computational Insight into Selective Hydrogenolysis over Monomeric MoOx-Modified Rh Catalysts in the Aqueous Phase","authors":"Kenshin Takei, Tatsushi Ikeda, Koki Muraoka, Yoshinao Nakagawa, Keiichi Tomishige, Akira Nakayama","doi":"10.1021/acs.jpcc.4c08142","DOIUrl":null,"url":null,"abstract":"The reaction mechanism of hydrogenolysis over monomeric MoO<sub><i>x</i></sub>-modified Rh catalysts is investigated by density functional theory-based molecular dynamics simulations. By explicitly treating the surrounding water molecules, the free energy surfaces are constructed for the aqueous-phase hydrogenolysis reaction. Ethylene glycol is employed as a model substrate, and it is shown that the attack of surface hydride-like species on the carbon atom at a position adjacent to the alkoxide ad-species via the S<sub>N</sub>2 reaction facilitates the cleavage of the C–O bond and it is more efficient than the attack on the carbon atom of alkoxide ad-species. Our study of the S<sub>N</sub>2 mechanism of the Rh–MoO<sub><i>x</i></sub> catalyst offers insight into the reaction mechanism of hydrogenolysis in the aqueous phase for metal nanoparticles modified with metal-oxide species and the design of selective catalysts for hydrogenolysis and other related reactions of biomass-derived feedstocks.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"33 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08142","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reaction mechanism of hydrogenolysis over monomeric MoOx-modified Rh catalysts is investigated by density functional theory-based molecular dynamics simulations. By explicitly treating the surrounding water molecules, the free energy surfaces are constructed for the aqueous-phase hydrogenolysis reaction. Ethylene glycol is employed as a model substrate, and it is shown that the attack of surface hydride-like species on the carbon atom at a position adjacent to the alkoxide ad-species via the SN2 reaction facilitates the cleavage of the C–O bond and it is more efficient than the attack on the carbon atom of alkoxide ad-species. Our study of the SN2 mechanism of the Rh–MoOx catalyst offers insight into the reaction mechanism of hydrogenolysis in the aqueous phase for metal nanoparticles modified with metal-oxide species and the design of selective catalysts for hydrogenolysis and other related reactions of biomass-derived feedstocks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Praseodymium-Doped Cerium Oxide (PrxCe1–xO2−δ) Nanoparticles with High Water Dispersibility: The Nature of Pr-Related Optical Transitions Studied by MCD Spectroscopy Theoretical Modeling of Direct Z-Scheme B,F-Doped g-C3N4/CoN4 Composites for Promoting Photocatalytic Water Splitting Reaction High-Throughput Screening of Dense Boron Nitride Structures from Structural Templates Potential-Dependent Atomic Dissolution and Segregation of Cu and Pt Surfaces Structure Thermal Domain Size in μm-Thick Single Crystalline Sapphire Wafer Uncovered by Low-Momentum Phonon Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1