{"title":"Off-Equilibrium Hydrothermal Synthesis of High-Entropy Alloy Nanoparticles","authors":"Zhixue Zhang, Peiping Yu, Zhaojun Liu, Kai Liu, Zerui Mu, Zhibin Wen, Junlin She, Yuke Bai, Qing Zhang, Tao Cheng, Chuanbo Gao","doi":"10.1021/jacs.4c17756","DOIUrl":null,"url":null,"abstract":"High-entropy alloy (HEA) nanoparticles offer unique catalytic properties due to their complex surface coordination and widely tunable electronic structures. Conventional synthesis methods typically involve extreme thermal shock (∼1700 °C) to achieve metal coreduction and mixing. While wet-chemical approaches hold potential for controlling nanoparticle properties, they are hindered by disparities in metal reduction kinetics and a diminished influence of configurational entropy on metal mixing at low temperatures, leading to phase segregation and limited compositional tunability. In this work, we introduce a novel wet-chemical hydrothermal method that enables the synthesis of HEA nanoparticles with enhanced compositional homogeneity and precise property control at low temperatures (∼170 °C). This method utilizes in situ generation of active hydrogen (H<sup>•</sup>) via organic dehydrogenation on nuclei/seed surfaces, creating localized off-equilibrium environments within the near-equilibrium wet-chemical system. These conditions mitigate the thermodynamic and kinetic limitations, enabling synchronized metal reduction, precise compositional tunability over a broad range, and improved alloy uniformity. As a proof of concept, we demonstrate the enhanced electrocatalytic methanol oxidation performance of PtCuNiCoFe HEA nanoparticles through surface composition design. This approach offers a robust platform for synthesizing HEA nanoparticles with tailored properties, expanding their catalytic applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"30 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17756","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloy (HEA) nanoparticles offer unique catalytic properties due to their complex surface coordination and widely tunable electronic structures. Conventional synthesis methods typically involve extreme thermal shock (∼1700 °C) to achieve metal coreduction and mixing. While wet-chemical approaches hold potential for controlling nanoparticle properties, they are hindered by disparities in metal reduction kinetics and a diminished influence of configurational entropy on metal mixing at low temperatures, leading to phase segregation and limited compositional tunability. In this work, we introduce a novel wet-chemical hydrothermal method that enables the synthesis of HEA nanoparticles with enhanced compositional homogeneity and precise property control at low temperatures (∼170 °C). This method utilizes in situ generation of active hydrogen (H•) via organic dehydrogenation on nuclei/seed surfaces, creating localized off-equilibrium environments within the near-equilibrium wet-chemical system. These conditions mitigate the thermodynamic and kinetic limitations, enabling synchronized metal reduction, precise compositional tunability over a broad range, and improved alloy uniformity. As a proof of concept, we demonstrate the enhanced electrocatalytic methanol oxidation performance of PtCuNiCoFe HEA nanoparticles through surface composition design. This approach offers a robust platform for synthesizing HEA nanoparticles with tailored properties, expanding their catalytic applications.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.