Rate-Dependent Mechanoluminescence in SrZn2S2O:Mn2+ for Time-Characterized Optoelectronic Devices

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-02-26 DOI:10.1021/acs.jpcc.4c0824410.1021/acs.jpcc.4c08244
Tingting Zhao, Hao Wang, Jiayue Jiang, Mei Li, Junlong Li, Ke Liu, Shang Peng, Bohao Zhao, Yanlong Chen, Jiao An, Yanchun Li, Sheng Jiang* and Chuanlong Lin*, 
{"title":"Rate-Dependent Mechanoluminescence in SrZn2S2O:Mn2+ for Time-Characterized Optoelectronic Devices","authors":"Tingting Zhao,&nbsp;Hao Wang,&nbsp;Jiayue Jiang,&nbsp;Mei Li,&nbsp;Junlong Li,&nbsp;Ke Liu,&nbsp;Shang Peng,&nbsp;Bohao Zhao,&nbsp;Yanlong Chen,&nbsp;Jiao An,&nbsp;Yanchun Li,&nbsp;Sheng Jiang* and Chuanlong Lin*,&nbsp;","doi":"10.1021/acs.jpcc.4c0824410.1021/acs.jpcc.4c08244","DOIUrl":null,"url":null,"abstract":"<p >Self-recoverable mechanoluminescence (ML) has demonstrated broad applications in mechanosensory optoelectronic devices based on pressure- and rate-dependent emission performance. However, understanding the coupled effect of pressure and rate on the ML kinetics remains elusive, limiting the design of time-characterized ML-based optoelectronic devices. Here, we show that SrZn<sub>2</sub>S<sub>2</sub>O:Mn<sup>2+</sup> exhibits an oscillatory ML behavior with a series of sharp emission peaks in a time-dependent ML curve under rapid compression from 0.1 to 11.0 GPa at critical rates of ∼1.7–4.7 GPa/s, distinct from the ML kinetics under decompression in which the ML curve presents broad emission peaks. The X-ray diffraction measurement shows that the SrZn<sub>2</sub>S<sub>2</sub>O matrix is stable up to ∼14.6 GPa above which it transforms to a new structure. Photoluminescence spectroscopy shows that SrZn<sub>2</sub>S<sub>2</sub>O changes monotonically in emission intensity and wavelength in the pressure range of 0.1–8.2 GPa. By combining the experimental results with the piezoelectric detrapping model, we suggest that the oscillatory ML behavior under rapid compression may result from the multiple-cyclic processes of the piezoelectrically induced excitation of the luminescent activators, indicating the intrinsic response to rapid compression. The rate-dependent distinct ML kinetics may be conducive to the design of ML devices with temporal characteristics.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 9","pages":"4715–4723 4715–4723"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c08244","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Self-recoverable mechanoluminescence (ML) has demonstrated broad applications in mechanosensory optoelectronic devices based on pressure- and rate-dependent emission performance. However, understanding the coupled effect of pressure and rate on the ML kinetics remains elusive, limiting the design of time-characterized ML-based optoelectronic devices. Here, we show that SrZn2S2O:Mn2+ exhibits an oscillatory ML behavior with a series of sharp emission peaks in a time-dependent ML curve under rapid compression from 0.1 to 11.0 GPa at critical rates of ∼1.7–4.7 GPa/s, distinct from the ML kinetics under decompression in which the ML curve presents broad emission peaks. The X-ray diffraction measurement shows that the SrZn2S2O matrix is stable up to ∼14.6 GPa above which it transforms to a new structure. Photoluminescence spectroscopy shows that SrZn2S2O changes monotonically in emission intensity and wavelength in the pressure range of 0.1–8.2 GPa. By combining the experimental results with the piezoelectric detrapping model, we suggest that the oscillatory ML behavior under rapid compression may result from the multiple-cyclic processes of the piezoelectrically induced excitation of the luminescent activators, indicating the intrinsic response to rapid compression. The rate-dependent distinct ML kinetics may be conducive to the design of ML devices with temporal characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Praseodymium-Doped Cerium Oxide (PrxCe1–xO2−δ) Nanoparticles with High Water Dispersibility: The Nature of Pr-Related Optical Transitions Studied by MCD Spectroscopy Theoretical Modeling of Direct Z-Scheme B,F-Doped g-C3N4/CoN4 Composites for Promoting Photocatalytic Water Splitting Reaction High-Throughput Screening of Dense Boron Nitride Structures from Structural Templates Potential-Dependent Atomic Dissolution and Segregation of Cu and Pt Surfaces Structure Thermal Domain Size in μm-Thick Single Crystalline Sapphire Wafer Uncovered by Low-Momentum Phonon Scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1