Zhen He , Xiangyun Tan , Ming Yuan , Liang Chen , Yan Meng , Qi Wang , Junjie Hu , Zhenpeng Qiu , Yuan Yang
{"title":"Anethole trithione mitigates LPS/D-Gal-induced acute liver injury by suppressing ROS production and NF-κB activity","authors":"Zhen He , Xiangyun Tan , Ming Yuan , Liang Chen , Yan Meng , Qi Wang , Junjie Hu , Zhenpeng Qiu , Yuan Yang","doi":"10.1016/j.intimp.2025.114371","DOIUrl":null,"url":null,"abstract":"<div><div>Acute liver injury (ALI) is a prevalent form of hepatic disease associated with significant morbidity and mortality due to medical treatments, exposure to toxins or viral infections. Anethole trithione (ATT) is a heterocyclic sulfur compound recognized for its chemoprotective properties against cancer and drug-induced toxicity. This study aimed to evaluate the effectiveness of ATT in the treatment of ALI. The therapeutic effects of ATT on hepatic injury were evaluated in vivo by inducing ALI in mice through the administration of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Additionally, HepG2 and Huh7 cells exposed to LPS were utilized to investigate the underlying mechanisms in vitro. The results indicated that ATT significantly reduced the production of reactive oxygen species (ROS), mitigated oxidative stress-related biochemical markers, and inhibited hepatocyte apoptosis in vivo, resulting in marked improvement in ALI in the murine model. Mechanistic studies conducted both in vivo and in vitro demonstrated that ATT alleviates LPS/D-Gal-induced ALI by inhibiting ROS production and the activity of nuclear factor-kappa B (NF-κB). Collectively, these findings underscore the potential therapeutic benefits of ATT in the management of ALI.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"152 ","pages":"Article 114371"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925003613","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute liver injury (ALI) is a prevalent form of hepatic disease associated with significant morbidity and mortality due to medical treatments, exposure to toxins or viral infections. Anethole trithione (ATT) is a heterocyclic sulfur compound recognized for its chemoprotective properties against cancer and drug-induced toxicity. This study aimed to evaluate the effectiveness of ATT in the treatment of ALI. The therapeutic effects of ATT on hepatic injury were evaluated in vivo by inducing ALI in mice through the administration of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Additionally, HepG2 and Huh7 cells exposed to LPS were utilized to investigate the underlying mechanisms in vitro. The results indicated that ATT significantly reduced the production of reactive oxygen species (ROS), mitigated oxidative stress-related biochemical markers, and inhibited hepatocyte apoptosis in vivo, resulting in marked improvement in ALI in the murine model. Mechanistic studies conducted both in vivo and in vitro demonstrated that ATT alleviates LPS/D-Gal-induced ALI by inhibiting ROS production and the activity of nuclear factor-kappa B (NF-κB). Collectively, these findings underscore the potential therapeutic benefits of ATT in the management of ALI.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.