Sota Kabasawa , Takahiro Watari , Yuki Sato , Yuga Hirakata , Masashi Hatamoto , Tsutomu Okubo , Carols Lopez Vazquez , Jules B. van Lier , Takashi Yamaguchi
{"title":"Evaluation of the process performance of comammox-like nitrospira dominant down-flow hanging sponge reactor with reduced nitrous oxide emissions","authors":"Sota Kabasawa , Takahiro Watari , Yuki Sato , Yuga Hirakata , Masashi Hatamoto , Tsutomu Okubo , Carols Lopez Vazquez , Jules B. van Lier , Takashi Yamaguchi","doi":"10.1016/j.wroa.2025.100324","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrification/denitrification mitigates excess nitrogen in wastewater and reduces nutrient pollution in recipient surface waters but emits substantial amounts of nitrous oxide (N₂O). Complete ammonia-oxidizing (comammox) bacteria provide novel opportunities to mitigate N₂O emissions from wastewater treatment systems. In this study, a down-flow hanging sponge (DHS) reactor with low-strength ammonia-based synthetic wastewater was used to culture comammox bacteria, to study the microbial community structure, and to assess the nitrogen removal performance. The results showed a high NH<sub>4</sub><sup>+</sup>-N removal efficiency of 98 ± 4 % and complete nitrification during the entire experimental period. 16S rRNA gene sequencing and metagenomic analysis showed that comammox-like <em>Nitrospira</em> dominated the DHS-retained sludge, and that comammox-like <em>Nitrospira</em> and ammonia-oxidizing archaea may have coexisted symbiotically. The dissolved N₂O emissions per NH<sub>4</sub><sup>+</sup>-N removed from the DHS reactor were much lower than those from conventional activated sludge processes, indicating that the DHS reactor could be effective in reducing N₂O emissions during wastewater treatment.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"28 ","pages":"Article 100324"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000234","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrification/denitrification mitigates excess nitrogen in wastewater and reduces nutrient pollution in recipient surface waters but emits substantial amounts of nitrous oxide (N₂O). Complete ammonia-oxidizing (comammox) bacteria provide novel opportunities to mitigate N₂O emissions from wastewater treatment systems. In this study, a down-flow hanging sponge (DHS) reactor with low-strength ammonia-based synthetic wastewater was used to culture comammox bacteria, to study the microbial community structure, and to assess the nitrogen removal performance. The results showed a high NH4+-N removal efficiency of 98 ± 4 % and complete nitrification during the entire experimental period. 16S rRNA gene sequencing and metagenomic analysis showed that comammox-like Nitrospira dominated the DHS-retained sludge, and that comammox-like Nitrospira and ammonia-oxidizing archaea may have coexisted symbiotically. The dissolved N₂O emissions per NH4+-N removed from the DHS reactor were much lower than those from conventional activated sludge processes, indicating that the DHS reactor could be effective in reducing N₂O emissions during wastewater treatment.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.