Fazla Rabby Raihan , Lway Faisal Abdulrazak , Md. Ashikur Rahman , Md Mamun Ali , Sobhy M. Ibrahim , Kawsar Ahmed , Francis M. Bui , Imran Mahmud
{"title":"StackTHP: A stacking ensemble model for accurate prediction of tumor-homing peptides in cancer therapy","authors":"Fazla Rabby Raihan , Lway Faisal Abdulrazak , Md. Ashikur Rahman , Md Mamun Ali , Sobhy M. Ibrahim , Kawsar Ahmed , Francis M. Bui , Imran Mahmud","doi":"10.1016/j.compbiomed.2025.109958","DOIUrl":null,"url":null,"abstract":"<div><div>The tumor-homing peptides (THPs) have emerged as one of the attractive resources for targeted cancer therapy, being able to bind and penetrate tumor cells selectively while ignoring adjacent healthy tissues. Therefore, the computational models to predict THPs became popular very rapidly, since laboratory methods are slow and resourceful. Herein, we are proposing StackTHP, a newly developed stacking-ensemble model aimed at further improving THP prediction accuracy. StackTHP implements multiple feature extraction methods, including amino acid composition (AAC), and pseudo amino acid composition (PAAC) together with classical machine learning classifiers like Extra Trees, Random Forest, and AdaBoost, while the logistic regression-based meta-classifier is used for the stacking framework. StackTHP outperformed all other models, producing an accuracy of 91.92 %, Matthew's correlation coefficient (MCC) of 0.8415, AUC of 0.977 on benchmark datasets, indicates that it is better than approaches attempted earlier and provides a robust solution for proceeding towards the discovery and development of peptide-based cancer therapies. Future research will focus on the application of StackTHP over more diverse sets of data along with some hybrid methods to enhance the prediction capability. The dataset and the code are available at the following link: <span><span>https://github.com/Ashikur562/StackTHP</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109958"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525003099","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The tumor-homing peptides (THPs) have emerged as one of the attractive resources for targeted cancer therapy, being able to bind and penetrate tumor cells selectively while ignoring adjacent healthy tissues. Therefore, the computational models to predict THPs became popular very rapidly, since laboratory methods are slow and resourceful. Herein, we are proposing StackTHP, a newly developed stacking-ensemble model aimed at further improving THP prediction accuracy. StackTHP implements multiple feature extraction methods, including amino acid composition (AAC), and pseudo amino acid composition (PAAC) together with classical machine learning classifiers like Extra Trees, Random Forest, and AdaBoost, while the logistic regression-based meta-classifier is used for the stacking framework. StackTHP outperformed all other models, producing an accuracy of 91.92 %, Matthew's correlation coefficient (MCC) of 0.8415, AUC of 0.977 on benchmark datasets, indicates that it is better than approaches attempted earlier and provides a robust solution for proceeding towards the discovery and development of peptide-based cancer therapies. Future research will focus on the application of StackTHP over more diverse sets of data along with some hybrid methods to enhance the prediction capability. The dataset and the code are available at the following link: https://github.com/Ashikur562/StackTHP.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.