{"title":"Tandem design on electrocatalysts and reactors for electrochemical CO2 reduction","authors":"Mingzhi Wang, Wensheng Fang, Deyu Zhu, Chenfeng Xia, Wei Guo, Bao Yu Xia","doi":"10.1016/S1872-2067(24)60209-3","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical CO<sub>2</sub> reduction (ECR) driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO<sub>2</sub> emissions. Tandem electrochemical CO<sub>2</sub> reduction (T-ECR), employs tandem catalysts with synergistic or complementary functions to efficiently convert CO<sub>2</sub> into multi-carbon (C<sub>2+</sub>) products in a succession of reactions within single or sequentially coupled reactors. However, the lack of clear interpretation and systematic understanding of T-ECR mechanisms has resulted in suboptimal current outcomes. This review presents new perspectives and summarizes recent advancements in efficient T-ECR across various scales, including synergistic tandem catalysis at the microscopic scale, relay tandem catalysis at the mesoscopic scale, and tandem reactors at the macroscopic scale. We begin by outlining the principle of tandem catalysis, followed by discuss on tandem catalyst design, the electrode construction, and reactor configuration. Additionally, we address the challenges and prospects of tandem strategies, emphasizing the integration of machine learning, theoretical calculations, and advanced characterization techniques for developing industry-scale CO<sub>2</sub> valorization.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"69 ","pages":"Pages 1-16"},"PeriodicalIF":15.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724602093","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction (ECR) driven by intermittent renewable energy sources is an emerging technology to achieve net-zero CO2 emissions. Tandem electrochemical CO2 reduction (T-ECR), employs tandem catalysts with synergistic or complementary functions to efficiently convert CO2 into multi-carbon (C2+) products in a succession of reactions within single or sequentially coupled reactors. However, the lack of clear interpretation and systematic understanding of T-ECR mechanisms has resulted in suboptimal current outcomes. This review presents new perspectives and summarizes recent advancements in efficient T-ECR across various scales, including synergistic tandem catalysis at the microscopic scale, relay tandem catalysis at the mesoscopic scale, and tandem reactors at the macroscopic scale. We begin by outlining the principle of tandem catalysis, followed by discuss on tandem catalyst design, the electrode construction, and reactor configuration. Additionally, we address the challenges and prospects of tandem strategies, emphasizing the integration of machine learning, theoretical calculations, and advanced characterization techniques for developing industry-scale CO2 valorization.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.