Kiheon Hong , Welman C. Elias , Kimberly N. Heck , Tanguy Terlier , Dimpel Dimpel , Wei Qian , Bing Liu , Takao Kurihara , Michael S. Wong
{"title":"Pulsed laser ablation-synthesized FePt nanoparticles have enhanced catalytic nitrite reduction activity","authors":"Kiheon Hong , Welman C. Elias , Kimberly N. Heck , Tanguy Terlier , Dimpel Dimpel , Wei Qian , Bing Liu , Takao Kurihara , Michael S. Wong","doi":"10.1016/j.cattod.2025.115254","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrate/nitrite pollution of water resources is an ubiquitous problem primarily due to the over application of fertilizer. While commercial methods which remove nitrates/nitrites exist, techniques which directly destroy the pollutants are more desirable. Nitrate/nitrite reduction by precious metal catalysts is one promising method to permanently convert nitrate/nitrite to non-toxic analogs. Amongst these, iron-platinum (“FePt”) compositions are generally considered inactive for NO<sub>2</sub><sup>-</sup>. In this study, we demonstrate that bimetallic FePt catalysts synthesized via a pulsed-laser-ablation-in-liquid method (“PLAL-FePt NPs”) exhibit notably improved activity for NO<sub>2</sub><sup>-</sup> compared to those synthesized by incipient wetness impregnation (“FePt/SiO<sub>2</sub>”) with the same elemental composition. While FePt/SiO<sub>2</sub> catalyst (60 at% Pt) had nitrite reduction activity, the PLAL-FePt NPs (57 at%) were ∼8 times more active (k<sub>cat</sub> ≈ 4.6 <em>vs.</em> 39.5 Lmin<sup>−1</sup>g<sub>surface Pt</sub><sup>−1</sup>) on a per surface Pt basis. When compared to the monometallic Pt catalyst, the PLAL-FePt NPs were ∼2 times more active. X-ray diffraction (XRD) show PLAL-FePt NPs to have intermetallic phases of Pt<sub>3</sub>Fe<sub>1</sub> and Pt<sub>1</sub>Fe<sub>1</sub>. In contrast, FePt/SiO<sub>2</sub> have multiple phases (Pt, Pt<sub>3</sub>Fe<sub>1</sub>, Pt<sub>1</sub>Fe<sub>1</sub>, and Pt<sub>1</sub>Fe<sub>3</sub>). X-ray photoelectron spectroscopy (XPS) showed that Pt gained electron density from Fe, correlating to the increased nitrite reduction activity of both bimetallic materials. These findings indicate an earth-abundant element like iron can improve platinum catalysis, highlighting Fe-Pt intermetallic alloys for further study as hydrogenation catalysts.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"453 ","pages":"Article 115254"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000720","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrate/nitrite pollution of water resources is an ubiquitous problem primarily due to the over application of fertilizer. While commercial methods which remove nitrates/nitrites exist, techniques which directly destroy the pollutants are more desirable. Nitrate/nitrite reduction by precious metal catalysts is one promising method to permanently convert nitrate/nitrite to non-toxic analogs. Amongst these, iron-platinum (“FePt”) compositions are generally considered inactive for NO2-. In this study, we demonstrate that bimetallic FePt catalysts synthesized via a pulsed-laser-ablation-in-liquid method (“PLAL-FePt NPs”) exhibit notably improved activity for NO2- compared to those synthesized by incipient wetness impregnation (“FePt/SiO2”) with the same elemental composition. While FePt/SiO2 catalyst (60 at% Pt) had nitrite reduction activity, the PLAL-FePt NPs (57 at%) were ∼8 times more active (kcat ≈ 4.6 vs. 39.5 Lmin−1gsurface Pt−1) on a per surface Pt basis. When compared to the monometallic Pt catalyst, the PLAL-FePt NPs were ∼2 times more active. X-ray diffraction (XRD) show PLAL-FePt NPs to have intermetallic phases of Pt3Fe1 and Pt1Fe1. In contrast, FePt/SiO2 have multiple phases (Pt, Pt3Fe1, Pt1Fe1, and Pt1Fe3). X-ray photoelectron spectroscopy (XPS) showed that Pt gained electron density from Fe, correlating to the increased nitrite reduction activity of both bimetallic materials. These findings indicate an earth-abundant element like iron can improve platinum catalysis, highlighting Fe-Pt intermetallic alloys for further study as hydrogenation catalysts.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.