Zero-shot low-dose CT denoising across variable schemes via strip-scanning diffusion models

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-03 DOI:10.1016/j.neucom.2025.129828
Bo Su , Jiabo Xu , Xiangyun Hu , Yunfei Zha , Jun Wan , Jiancheng Li
{"title":"Zero-shot low-dose CT denoising across variable schemes via strip-scanning diffusion models","authors":"Bo Su ,&nbsp;Jiabo Xu ,&nbsp;Xiangyun Hu ,&nbsp;Yunfei Zha ,&nbsp;Jun Wan ,&nbsp;Jiancheng Li","doi":"10.1016/j.neucom.2025.129828","DOIUrl":null,"url":null,"abstract":"<div><div>Artifacts and noise in low-dose CT (LDCT) may degrade image quality, potentially impacting subsequent diagnoses. In recent years, supervised image post-processing methods have been extensively studied for their effectiveness in noise reduction. However, clinical conditions often make it difficult to obtain paired normal-dose and low-dose CT images. Additionally, scanning protocols in clinical settings are diverse, necessitating different thickness or dose settings, which further complicates and increases the cost of low-dose data collection. These challenges limit the practical application and widespread adoption of supervised methods. This study introduces a novel end-to-end zero-shot strip-scanning diffusion model (SSDiff) that requires only a single model trained on normal-dose CT (NDCT) images to achieve LDCT image denoising across various scanning protocols with different slice thicknesses, doses, or devices. The sampling process employs a strip scanning strategy that combines overlapping strip information and input LDCT images to solve the maximum a posteriori problem to produce denoising results sequentially. We use only simple convolutional and attentional architectures and perform extensive experiments on three different datasets involving different doses, thicknesses, and devices; the results show that our method outperforms supervised methods in most cases, and visualization and blinded evaluations indicate that our method is very close to NDCT.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"633 ","pages":"Article 129828"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005004","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artifacts and noise in low-dose CT (LDCT) may degrade image quality, potentially impacting subsequent diagnoses. In recent years, supervised image post-processing methods have been extensively studied for their effectiveness in noise reduction. However, clinical conditions often make it difficult to obtain paired normal-dose and low-dose CT images. Additionally, scanning protocols in clinical settings are diverse, necessitating different thickness or dose settings, which further complicates and increases the cost of low-dose data collection. These challenges limit the practical application and widespread adoption of supervised methods. This study introduces a novel end-to-end zero-shot strip-scanning diffusion model (SSDiff) that requires only a single model trained on normal-dose CT (NDCT) images to achieve LDCT image denoising across various scanning protocols with different slice thicknesses, doses, or devices. The sampling process employs a strip scanning strategy that combines overlapping strip information and input LDCT images to solve the maximum a posteriori problem to produce denoising results sequentially. We use only simple convolutional and attentional architectures and perform extensive experiments on three different datasets involving different doses, thicknesses, and devices; the results show that our method outperforms supervised methods in most cases, and visualization and blinded evaluations indicate that our method is very close to NDCT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于条带扫描扩散模型的零次低剂量CT去噪
低剂量CT (LDCT)中的伪影和噪声可能会降低图像质量,潜在地影响后续诊断。近年来,有监督图像后处理方法因其在降噪方面的有效性得到了广泛的研究。然而,临床条件往往难以获得配对正常剂量和低剂量的CT图像。此外,临床环境中的扫描方案多种多样,需要不同的厚度或剂量设置,这进一步复杂化并增加了低剂量数据收集的成本。这些挑战限制了监督方法的实际应用和广泛采用。本研究引入了一种新型的端到端零射击条带扫描扩散模型(SSDiff),该模型只需要一个在正常剂量CT (NDCT)图像上训练的单一模型,就可以在不同的扫描方案、不同的切片厚度、剂量或设备上实现LDCT图像的去噪。采样过程采用条带扫描策略,将重叠的条带信息与输入的LDCT图像相结合,解决最大后验问题,依次产生去噪结果。我们只使用简单的卷积和注意力架构,并在涉及不同剂量、厚度和设备的三种不同数据集上进行了广泛的实验;结果表明,我们的方法在大多数情况下优于监督方法,可视化和盲法评估表明我们的方法非常接近NDCT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Dynamic hypergraph structure learning for spatio-temporal time series forecasting ASHSR: Enhancing query-based occupancy prediction via anti-occlusion sampling and hard sample reweighting CDNE: Community deception from node and edge perspectives 3MU-Net: A multi-layer, multi-view and multi-modal segmentation model for PET/CT images of lung tumors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1