Evaluation of a novel ensemble model for preoperative ovarian cancer diagnosis: Clinical factors, O-RADS, and deep learning radiomics

IF 5 2区 医学 Q2 Medicine Translational Oncology Pub Date : 2025-03-05 DOI:10.1016/j.tranon.2025.102335
Yimin Wu , Lifang Fan , Haixin Shao , Jiale Li , Weiwei Yin , Jing Yin , Weiyu Zhu , Pingyang Zhang , Chaoxue Zhang , Junli Wang
{"title":"Evaluation of a novel ensemble model for preoperative ovarian cancer diagnosis: Clinical factors, O-RADS, and deep learning radiomics","authors":"Yimin Wu ,&nbsp;Lifang Fan ,&nbsp;Haixin Shao ,&nbsp;Jiale Li ,&nbsp;Weiwei Yin ,&nbsp;Jing Yin ,&nbsp;Weiyu Zhu ,&nbsp;Pingyang Zhang ,&nbsp;Chaoxue Zhang ,&nbsp;Junli Wang","doi":"10.1016/j.tranon.2025.102335","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate early diagnosis of ovarian cancer is crucial. The objective of this research is to create a comprehensive model that merges clinical variables, O-RADS, and deep learning radiomics to support preoperative diagnosis and assess its efficacy for sonographers.</div></div><div><h3>Materials and methods</h3><div>Data from two centers were used: Center 1 for training and internal validation, and Center 2 for external validation. DL and radiomics features were extracted from transvaginal ultrasound images to create a DL radiomics model using the LASSO method. A machine learning model ensemble was created by merging clinical variables, O-RADS scores, and DL radiomics model predictions. The model's effectiveness was evaluated by measuring the area under the receiver operating characteristic curve (AUC) and analyzing its impact on improving the diagnostic skills of sonographers. Moreover, the model's additional usefulness was assessed through integrated discrimination improvement (IDI), net reclassification improvement (NRI), and subgroup analysis.</div></div><div><h3>Results</h3><div>The ensemble model demonstrated superior diagnostic performance for ovarian cancer compared to standalone clinical models and clinical O-RADS models. Notably, there were significant improvements in the NRI and IDI across all three datasets, with p-values &lt; 0.05. The ensemble model exhibited exceptional diagnostic performance, achieving AUCs of 0.97 in both the internal and external validation sets. Moreover, the implementation of this ensemble model substantially improved the diagnostic precision and reliability of sonographers. The sonographers' average AUC improved by 11 % in the internal validation set and by 7.7 % in the external validation set.</div></div><div><h3>Conclusions</h3><div>The ensemble model significantly enhances preoperative ovarian cancer diagnosis accuracy and improves sonographers' diagnostic capabilities and consistency.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"54 ","pages":"Article 102335"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S193652332500066X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Accurate early diagnosis of ovarian cancer is crucial. The objective of this research is to create a comprehensive model that merges clinical variables, O-RADS, and deep learning radiomics to support preoperative diagnosis and assess its efficacy for sonographers.

Materials and methods

Data from two centers were used: Center 1 for training and internal validation, and Center 2 for external validation. DL and radiomics features were extracted from transvaginal ultrasound images to create a DL radiomics model using the LASSO method. A machine learning model ensemble was created by merging clinical variables, O-RADS scores, and DL radiomics model predictions. The model's effectiveness was evaluated by measuring the area under the receiver operating characteristic curve (AUC) and analyzing its impact on improving the diagnostic skills of sonographers. Moreover, the model's additional usefulness was assessed through integrated discrimination improvement (IDI), net reclassification improvement (NRI), and subgroup analysis.

Results

The ensemble model demonstrated superior diagnostic performance for ovarian cancer compared to standalone clinical models and clinical O-RADS models. Notably, there were significant improvements in the NRI and IDI across all three datasets, with p-values < 0.05. The ensemble model exhibited exceptional diagnostic performance, achieving AUCs of 0.97 in both the internal and external validation sets. Moreover, the implementation of this ensemble model substantially improved the diagnostic precision and reliability of sonographers. The sonographers' average AUC improved by 11 % in the internal validation set and by 7.7 % in the external validation set.

Conclusions

The ensemble model significantly enhances preoperative ovarian cancer diagnosis accuracy and improves sonographers' diagnostic capabilities and consistency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
2.00%
发文量
314
审稿时长
54 days
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
期刊最新文献
BUB1B promotes cisplatin resistance in gastric cancer via Rad51-mediated DNA damage repair Targeting FEN1/EXO1 to enhance efficacy of PARP inhibition in triple-negative breast cancer Inflammasomes in lymphocytes as therapeutic targets TTC7A-ALK, a novel ALK fusion variant identified in a patient with metastatic lung adenocarcinoma, exhibits excellent response to crizotinib Targeted mitochondrial therapy for pancreatic cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1