Martin Kukrál , Duc Thien Pham , Josef Kohout , Štefan Kohek , Marek Havlík , Dominika Grygarová
{"title":"Near-lossless EEG signal compression using a convolutional autoencoder: Case study for 256-channel binocular rivalry dataset","authors":"Martin Kukrál , Duc Thien Pham , Josef Kohout , Štefan Kohek , Marek Havlík , Dominika Grygarová","doi":"10.1016/j.compbiomed.2025.109888","DOIUrl":null,"url":null,"abstract":"<div><div>Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"189 ","pages":"Article 109888"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525002392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalography (EEG) experiments typically generate vast amounts of data due to the high sampling rates and the use of multiple electrodes to capture brain activity. Consequently, storing and transmitting these large datasets is challenging, necessitating the creation of specialized compression techniques tailored to this data type. This study proposes one such method, which at its core uses an artificial neural network (specifically a convolutional autoencoder) to learn the latent representations of modelled EEG signals to perform lossy compression, which gets further improved with lossless corrections based on the user-defined threshold for the maximum tolerable amplitude loss, resulting in a flexible near-lossless compression scheme. To test the viability of our approach, a case study was performed on the 256-channel binocular rivalry dataset, which also describes mostly data-specific statistical analyses and preprocessing steps. Compression results, evaluation metrics, and comparisons with baseline general compression methods suggest that the proposed method can achieve substantial compression results and speed, making it one of the potential research topics for follow-up studies.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.