Long-term properties of grout-soil composite eroded by seawater environment in submarine tunnel

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Tunnelling and Underground Space Technology Pub Date : 2025-03-04 DOI:10.1016/j.tust.2025.106519
Chengqian Wang , Peng Li , QingSong Zhang , Tianshu Wang
{"title":"Long-term properties of grout-soil composite eroded by seawater environment in submarine tunnel","authors":"Chengqian Wang ,&nbsp;Peng Li ,&nbsp;QingSong Zhang ,&nbsp;Tianshu Wang","doi":"10.1016/j.tust.2025.106519","DOIUrl":null,"url":null,"abstract":"<div><div>The grouting method plays a critical role in preventing seawater intrusion in submarine tunnels, particularly in regions with highly weathered rock that are susceptible to erosion and shifting seawater. The long-term properties of the strength and impermeability of the grout–soil composite are related to the durability of the tunnel lining structure, which is an important focus of the present research. This study introduces a new method for calculating material ratios to determine the optimal proportions of each component in grout–soil composites. A specialized experimental setup was designed to replicate the erosive conditions of seawater in environments characterized by significant rock weathering. The primary objective of this investigation was to analyze the weakening effects of seawater ions (e.g., Mg<sup>2+</sup>, SO<sub>4</sub><sup>2−</sup>, Cl<sup>−</sup>) on the grout–soil composite under dynamic seawater flow conditions. Therefore, the influence of water-cement (W-C) ratio, grouting pressure, and erosion duration on the compressive strength and permeability coefficient of the composite was studied. Furthermore, microscopic analyses were conducted to investigate the microstructure and composition of the weakened composite specimens. Finally, the model of damage weakening in grouted composite has been established. The experimental results indicate that the erosive ions (Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>) initially enhance and then weaken the strength and impermeability of the grouted composite, while Mg<sup>2+</sup> ions continuously degrade the strength of the composite. Reducing the water-to-cement ratio and increasing the grouting pressure can improve the strength and impermeability of the grouted composite, but once a certain threshold is reached, the enhancement effect becomes negligible. Under different dynamic water environments and with various erosive ions (Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Mg<sup>2+</sup>, and seawater), the compressive strength of the specimens at the end of the erosion process decreased by 25.49%, 31.21%, 50.34%, and 39.70%, respectively, compared to static freshwater. The permeability coefficient increased by 8.5 times, 3.2 times, 5.8 times, and 8.9 times, respectively. As the W/C ratio increased from 0.8 to 1.2, the compressive strength decreased by 27.67%, 38.97%, 65.70%, and 44.58%, respectively, and the permeability coefficient increased by 55.24%, 59.70%, 134.23%, and 44.49%. As the grouting pressure increased from 1.5 MPa to 2.5 MPa, the compressive strength increased by 48.90%, 162.60%, 163.71%, and 48.35%, respectively, while the permeability coefficient decreased by 53.76%, 40.05%, 73.69%, and 32.89%. The findings of this study offer valuable insights into the erosion mechanism of grout–soil composites induced by seawater ions, thereby contributing to enhanced durability and longevity of submarine tunnel infrastructure.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"161 ","pages":"Article 106519"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001579","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The grouting method plays a critical role in preventing seawater intrusion in submarine tunnels, particularly in regions with highly weathered rock that are susceptible to erosion and shifting seawater. The long-term properties of the strength and impermeability of the grout–soil composite are related to the durability of the tunnel lining structure, which is an important focus of the present research. This study introduces a new method for calculating material ratios to determine the optimal proportions of each component in grout–soil composites. A specialized experimental setup was designed to replicate the erosive conditions of seawater in environments characterized by significant rock weathering. The primary objective of this investigation was to analyze the weakening effects of seawater ions (e.g., Mg2+, SO42−, Cl) on the grout–soil composite under dynamic seawater flow conditions. Therefore, the influence of water-cement (W-C) ratio, grouting pressure, and erosion duration on the compressive strength and permeability coefficient of the composite was studied. Furthermore, microscopic analyses were conducted to investigate the microstructure and composition of the weakened composite specimens. Finally, the model of damage weakening in grouted composite has been established. The experimental results indicate that the erosive ions (Cl, SO42−) initially enhance and then weaken the strength and impermeability of the grouted composite, while Mg2+ ions continuously degrade the strength of the composite. Reducing the water-to-cement ratio and increasing the grouting pressure can improve the strength and impermeability of the grouted composite, but once a certain threshold is reached, the enhancement effect becomes negligible. Under different dynamic water environments and with various erosive ions (Cl, SO42−, Mg2+, and seawater), the compressive strength of the specimens at the end of the erosion process decreased by 25.49%, 31.21%, 50.34%, and 39.70%, respectively, compared to static freshwater. The permeability coefficient increased by 8.5 times, 3.2 times, 5.8 times, and 8.9 times, respectively. As the W/C ratio increased from 0.8 to 1.2, the compressive strength decreased by 27.67%, 38.97%, 65.70%, and 44.58%, respectively, and the permeability coefficient increased by 55.24%, 59.70%, 134.23%, and 44.49%. As the grouting pressure increased from 1.5 MPa to 2.5 MPa, the compressive strength increased by 48.90%, 162.60%, 163.71%, and 48.35%, respectively, while the permeability coefficient decreased by 53.76%, 40.05%, 73.69%, and 32.89%. The findings of this study offer valuable insights into the erosion mechanism of grout–soil composites induced by seawater ions, thereby contributing to enhanced durability and longevity of submarine tunnel infrastructure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
期刊最新文献
Shaking table and pushover tests on subway station improved by truncated columns Experimental and numerical research of hydrogen-blended natural gas leakage and diffusion in utility tunnels Multi-parameter determination method for rock discontinuity roughness based on geometric properties intelligent extraction Analysis of longitudinal deformation of existing rectangular pipe jacking tunnel caused by shield tunnel undercrossing The experimental study on the flame extension length and maximum temperature of ceiling jet flame in the curved tunnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1