Hengzhu Liu , Ping Xiong , Tianqing Zhu , Philip S. Yu
{"title":"A survey on machine unlearning: Techniques and new emerged privacy risks","authors":"Hengzhu Liu , Ping Xiong , Tianqing Zhu , Philip S. Yu","doi":"10.1016/j.jisa.2025.104010","DOIUrl":null,"url":null,"abstract":"<div><div>The explosive growth of machine learning has made it a critical infrastructure in the era of artificial intelligence. The extensive use of data poses a significant threat to individual privacy. Various countries have implemented corresponding laws, such as GDPR, to protect individuals’ data privacy and the right to be forgotten. This has made machine unlearning a research hotspot in the field of privacy protection in recent years, with the aim of efficiently removing the contribution and impact of individual data from trained models. The research in academia on machine unlearning has continuously enriched its theoretical foundation, and many methods have been proposed, targeting different data removal requests in various application scenarios. However, recently researchers have found potential privacy leakages of various of machine unlearning approaches, making the privacy preservation on machine unlearning area a critical topic. This paper provides an overview and analysis of the existing research on machine unlearning, aiming to present the current vulnerabilities of machine unlearning approaches. We analyze privacy risks in various aspects, including definitions, implementation methods, and real-world applications. Compared to existing reviews, we analyze the new challenges posed by the latest malicious attack techniques on machine unlearning from the perspective of privacy threats. We hope that this survey can provide an initial but comprehensive discussion on this new emerging area.</div></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"90 ","pages":"Article 104010"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212625000481","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The explosive growth of machine learning has made it a critical infrastructure in the era of artificial intelligence. The extensive use of data poses a significant threat to individual privacy. Various countries have implemented corresponding laws, such as GDPR, to protect individuals’ data privacy and the right to be forgotten. This has made machine unlearning a research hotspot in the field of privacy protection in recent years, with the aim of efficiently removing the contribution and impact of individual data from trained models. The research in academia on machine unlearning has continuously enriched its theoretical foundation, and many methods have been proposed, targeting different data removal requests in various application scenarios. However, recently researchers have found potential privacy leakages of various of machine unlearning approaches, making the privacy preservation on machine unlearning area a critical topic. This paper provides an overview and analysis of the existing research on machine unlearning, aiming to present the current vulnerabilities of machine unlearning approaches. We analyze privacy risks in various aspects, including definitions, implementation methods, and real-world applications. Compared to existing reviews, we analyze the new challenges posed by the latest malicious attack techniques on machine unlearning from the perspective of privacy threats. We hope that this survey can provide an initial but comprehensive discussion on this new emerging area.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.