Ore-forming simulation of the Axi low-sulfidation epithermal gold deposit, Western China: Genetic implications on mineralization pattern

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geochemical Exploration Pub Date : 2025-02-25 DOI:10.1016/j.gexplo.2025.107740
Shaofeng Xie , Zhankun Liu , Xiancheng Mao , Cheng Wang , Longbo Li
{"title":"Ore-forming simulation of the Axi low-sulfidation epithermal gold deposit, Western China: Genetic implications on mineralization pattern","authors":"Shaofeng Xie ,&nbsp;Zhankun Liu ,&nbsp;Xiancheng Mao ,&nbsp;Cheng Wang ,&nbsp;Longbo Li","doi":"10.1016/j.gexplo.2025.107740","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the understanding of fluid migration and mineralization localization within epithermal gold systems is of utmost significance for mineral exploration. In this study, a series of numerical simulation experiments were carried out at the Axi low-sulfidation epithermal gold deposit in western China under variable stress conditions by employing the FLAC<sup>3D</sup> software. The objective was to explore the fluid migration process during the ore-forming period. The results demonstrate that the extensional deformation and fluid migration patterns of simple compressive or tensional model cannot yield the known mineralization distribution, while the corrected 30° tension model leads to sinistral strike-slip, resulting in the current gold mineralization pattern. The NE-trending fault extension zone associated with the deformation setting is inferred as the migration pathway of the deep-seated ore-forming fluids. Several deep fluid migration pathways beneath the known mineralization are determined. Numerical simulation of the metallogenic process reveals that the fault structure controls the scale and extent of fluid migration. The gold distribution in the Axi deposit can be ascribed to shear strain localization, the development of dilation, and the focusing of fluids into the dilatant fault. By means of thermo-fluid-mechanical coupling, the models have generated several potential gold mineralization targets in the southern and northern segments. This case study emphasizes that the mineralization of the Axi gold deposit is predominantly controlled by fault geometry associated with specific stress directions and demonstrates that numerical modeling is a robust tool for identifying potential mineralization.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"273 ","pages":"Article 107740"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037567422500072X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the understanding of fluid migration and mineralization localization within epithermal gold systems is of utmost significance for mineral exploration. In this study, a series of numerical simulation experiments were carried out at the Axi low-sulfidation epithermal gold deposit in western China under variable stress conditions by employing the FLAC3D software. The objective was to explore the fluid migration process during the ore-forming period. The results demonstrate that the extensional deformation and fluid migration patterns of simple compressive or tensional model cannot yield the known mineralization distribution, while the corrected 30° tension model leads to sinistral strike-slip, resulting in the current gold mineralization pattern. The NE-trending fault extension zone associated with the deformation setting is inferred as the migration pathway of the deep-seated ore-forming fluids. Several deep fluid migration pathways beneath the known mineralization are determined. Numerical simulation of the metallogenic process reveals that the fault structure controls the scale and extent of fluid migration. The gold distribution in the Axi deposit can be ascribed to shear strain localization, the development of dilation, and the focusing of fluids into the dilatant fault. By means of thermo-fluid-mechanical coupling, the models have generated several potential gold mineralization targets in the southern and northern segments. This case study emphasizes that the mineralization of the Axi gold deposit is predominantly controlled by fault geometry associated with specific stress directions and demonstrates that numerical modeling is a robust tool for identifying potential mineralization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
期刊最新文献
Editorial Board Metallogenesis of the sediment-hosted copper deposits in the Miocene sandstones from Upper Red Formation, Zanjan, NW Iran Driving factors of soil selenium accumulation in regional enrichment area at selenium-deficient soil belt of China: An enlightenment of Moran's index and machine learning Assessment of LUNAR, iForest, LOF, and LSCP methodologies in delineating geochemical anomalies for mineral exploration Silicon isotope behavior during silica diagenesis recorded by silica sinters in a geothermal system, Xizang, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1