Exploring pressure-driven semiconducting to metallic phase transition in lead-free InGeX3 (X=F, Cl) perovskites with tunable optoelectronic and mechanical properties via DFT

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2025-03-03 DOI:10.1016/j.physb.2025.417083
Md Mehedi Hasan , Md Amran Sarker , Md Rabbi Talukder , Moshina Binte Mansur , Md Rasidul Islam , Sohail Ahmad
{"title":"Exploring pressure-driven semiconducting to metallic phase transition in lead-free InGeX3 (X=F, Cl) perovskites with tunable optoelectronic and mechanical properties via DFT","authors":"Md Mehedi Hasan ,&nbsp;Md Amran Sarker ,&nbsp;Md Rabbi Talukder ,&nbsp;Moshina Binte Mansur ,&nbsp;Md Rasidul Islam ,&nbsp;Sohail Ahmad","doi":"10.1016/j.physb.2025.417083","DOIUrl":null,"url":null,"abstract":"<div><div>Throughout this investigation, the pressure-driven structural, electronic, optical, and mechanical characteristics of Ge-based lead-free InGeX<sub>3</sub> (X = F, Cl) perovskites are inspected. To thoroughly examine these properties under pressure ranging from 0 to 24 GPa for InGeF<sub>3</sub> and 0–6 GPa for InGeCl<sub>3</sub>, where density functional theory (DFT) calculations are performed operating the CASTEP module. Under increasing pressure, the lattice parameter and volumes of unit cells decline, while both compounds reveal thermodynamic stability via formation energy. The band gap of InGeCl<sub>3</sub> indicates a direct band gap (R–R) semiconductor of 0.879 eV, whether InGeF<sub>3</sub> has an indirect band (R–M) semiconductor of 1.449 eV at ambient pressure utilizing PBE functional. The recalculated band gap for InGeF<sub>3</sub> and InGeCl<sub>3</sub> are 2.183 eV, and 1.624 eV, respectively utilizing HSE06 functional. Their semiconducting nature changes to a metal with increased pressure. TDOS &amp; PDOS are estimated to understand the origin of the band gap and pressure-induced charge density mapping investigates the bonding characteristics. Under various hydrostatic pressures, the optical properties, among which are the dielectric function, reflectivity, conductivity, refractive index, and absorption coefficient, are calculated and analyzed. These compounds absorb strongly in the UV spectrum, making them ideal for sterilizing surgical instruments, and also absorb well in the visible region, aligning with higher photoconductivity. Besides, their high R values in the high-energy range make them excellent for UV-blocking coatings. However, both compounds have enhanced optoelectronic properties under hydrostatic pressure. Moreover, these perovskites are discovered to remain stable, and ductile within pressure as well as enhanced mechanical characteristics through the elastic constants. Thus, these applicants are highly suitable for solar cells and various optoelectronic devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"705 ","pages":"Article 417083"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002005","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout this investigation, the pressure-driven structural, electronic, optical, and mechanical characteristics of Ge-based lead-free InGeX3 (X = F, Cl) perovskites are inspected. To thoroughly examine these properties under pressure ranging from 0 to 24 GPa for InGeF3 and 0–6 GPa for InGeCl3, where density functional theory (DFT) calculations are performed operating the CASTEP module. Under increasing pressure, the lattice parameter and volumes of unit cells decline, while both compounds reveal thermodynamic stability via formation energy. The band gap of InGeCl3 indicates a direct band gap (R–R) semiconductor of 0.879 eV, whether InGeF3 has an indirect band (R–M) semiconductor of 1.449 eV at ambient pressure utilizing PBE functional. The recalculated band gap for InGeF3 and InGeCl3 are 2.183 eV, and 1.624 eV, respectively utilizing HSE06 functional. Their semiconducting nature changes to a metal with increased pressure. TDOS & PDOS are estimated to understand the origin of the band gap and pressure-induced charge density mapping investigates the bonding characteristics. Under various hydrostatic pressures, the optical properties, among which are the dielectric function, reflectivity, conductivity, refractive index, and absorption coefficient, are calculated and analyzed. These compounds absorb strongly in the UV spectrum, making them ideal for sterilizing surgical instruments, and also absorb well in the visible region, aligning with higher photoconductivity. Besides, their high R values in the high-energy range make them excellent for UV-blocking coatings. However, both compounds have enhanced optoelectronic properties under hydrostatic pressure. Moreover, these perovskites are discovered to remain stable, and ductile within pressure as well as enhanced mechanical characteristics through the elastic constants. Thus, these applicants are highly suitable for solar cells and various optoelectronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Continuous two spin reorientation transitions and spin flips along the b-axis in Er0.6Gd0.4FeO3 single crystal Neutron diffraction and critical behavior study on (Mn, Co)2Sn single crystals Improved electrical, UV detection and emission properties of Zn1-xCuxO nano structured thin films for optoelectronics applications Exploring pressure-driven semiconducting to metallic phase transition in lead-free InGeX3 (X=F, Cl) perovskites with tunable optoelectronic and mechanical properties via DFT Discovery of a new soft metallic monolayer BPt2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1