Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang
{"title":"Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction","authors":"Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang","doi":"10.1016/j.actphy.2025.100068","DOIUrl":null,"url":null,"abstract":"<div><div>The simultaneous enhancement of separation and utilization of bulk and surface charges is crucial for achieving efficient photocatalytic H<sub>2</sub> evolution reactions. In this study, NiCr<sub>2</sub>O<sub>4</sub>/T-CZS composites were fabricated by incorporating NiCr<sub>2</sub>O<sub>4</sub> nanosheets onto the surface of twinned Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (T-CZS) nanoparticles using a solvent evaporation strategy. After optimization, the 6% NiCr<sub>2</sub>O<sub>4</sub>/T-CZS exhibited an impressive hydrogen (H<sub>2</sub>) evolution rate (<em>r</em><sub>H2</sub>) of 81.4 mmol·h<sup>−1</sup>·g<sup>−1</sup> when employing polylactic acid (PLA) plastic as a sacrificial agent in NaOH solution. The reason behind this can be mainly attributed to the fact that T-CZS consists of wurtzite Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (WZ-CZS) and zinc blende Cd<sub>0.5</sub>Zn<sub>0.5</sub>S (ZB-CZS) with slight band structure differences, thereby facilitating rapid bulk phase and interface charge separation due to the S-scheme charge transfer routes between WZ-CZS and ZB-CZS, as well as T-CZS and NiCr<sub>2</sub>O<sub>4</sub>. Moreover, this system can effectively retain electrons with strong reducing ability for efficient H<sub>2</sub> evolution reaction (HER) and generate hot electrons through the localized surface plasmon resonance (LSPR) effect of NiCr<sub>2</sub>O<sub>4</sub>, which enhances the absorption of UV–Vis–NIR light energy, thereby facilitating the HER process. What's more, NaOH solution can indirectly promote the HER kinetics by enhancing the oxidative driving force of holes. Additionally, other metal chromates (MCr<sub><em>x</em></sub>O<sub><em>y</em></sub>), such as CoCr<sub>2</sub>O<sub>4</sub>, AgCrO<sub>2</sub>, Bi<sub>6</sub>CrO<sub>12</sub>, BaCrO<sub>4</sub>, ZnCr<sub>2</sub>O<sub>4</sub>, CdCr<sub>2</sub>O<sub>4</sub>, CuCr<sub>2</sub>O<sub>4</sub> <em>etc.</em>, were employed to enhance the activity of T-CZS too. The results show that above homo-heterojunction composites can integrate waste plastic degradation and photocatalytic H<sub>2</sub> evolution effectively based on their S-scheme bulk phase and interface charge separation mechanisms. This work provides new insights into energy and environmental challenges.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 6","pages":"Article 100068"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000244","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The simultaneous enhancement of separation and utilization of bulk and surface charges is crucial for achieving efficient photocatalytic H2 evolution reactions. In this study, NiCr2O4/T-CZS composites were fabricated by incorporating NiCr2O4 nanosheets onto the surface of twinned Cd0.5Zn0.5S (T-CZS) nanoparticles using a solvent evaporation strategy. After optimization, the 6% NiCr2O4/T-CZS exhibited an impressive hydrogen (H2) evolution rate (rH2) of 81.4 mmol·h−1·g−1 when employing polylactic acid (PLA) plastic as a sacrificial agent in NaOH solution. The reason behind this can be mainly attributed to the fact that T-CZS consists of wurtzite Cd0.5Zn0.5S (WZ-CZS) and zinc blende Cd0.5Zn0.5S (ZB-CZS) with slight band structure differences, thereby facilitating rapid bulk phase and interface charge separation due to the S-scheme charge transfer routes between WZ-CZS and ZB-CZS, as well as T-CZS and NiCr2O4. Moreover, this system can effectively retain electrons with strong reducing ability for efficient H2 evolution reaction (HER) and generate hot electrons through the localized surface plasmon resonance (LSPR) effect of NiCr2O4, which enhances the absorption of UV–Vis–NIR light energy, thereby facilitating the HER process. What's more, NaOH solution can indirectly promote the HER kinetics by enhancing the oxidative driving force of holes. Additionally, other metal chromates (MCrxOy), such as CoCr2O4, AgCrO2, Bi6CrO12, BaCrO4, ZnCr2O4, CdCr2O4, CuCr2O4etc., were employed to enhance the activity of T-CZS too. The results show that above homo-heterojunction composites can integrate waste plastic degradation and photocatalytic H2 evolution effectively based on their S-scheme bulk phase and interface charge separation mechanisms. This work provides new insights into energy and environmental challenges.