Predicting FOXA1 gene mutation status in prostate cancer through multi-modal deep learning

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2025-03-05 DOI:10.1016/j.bspc.2025.107739
Simin Lin , Longxin Deng , Ziwei Hu , Chengda Lin , Yongxin Mao , Yuntao Liu , Wei Li , Yue Yang , Rui Zhou , Yancheng Lai , Huang He , Tao Tan , Xinlin Zhang , Tong Tong , Na Ta , Rui Chen
{"title":"Predicting FOXA1 gene mutation status in prostate cancer through multi-modal deep learning","authors":"Simin Lin ,&nbsp;Longxin Deng ,&nbsp;Ziwei Hu ,&nbsp;Chengda Lin ,&nbsp;Yongxin Mao ,&nbsp;Yuntao Liu ,&nbsp;Wei Li ,&nbsp;Yue Yang ,&nbsp;Rui Zhou ,&nbsp;Yancheng Lai ,&nbsp;Huang He ,&nbsp;Tao Tan ,&nbsp;Xinlin Zhang ,&nbsp;Tong Tong ,&nbsp;Na Ta ,&nbsp;Rui Chen","doi":"10.1016/j.bspc.2025.107739","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer stands as the foremost cause of cancer-related mortality among men globally, with its incidence and mortality rates increasing alongside the aging population. The FOXA1 gene assumes a pivotal role in prostate cancer pathology, which is potential as a prognostic indicator and a potent therapeutic target across various stages of prostate cancer. Mutations in FOXA1 have been shown to amplify, supplant, and reconfigure Androgen Receptor function, thereby fostering prostate cancer proliferation. FOXA1 is the most common molecular mutation type in Asian prostate cancer patients, with a mutation rate reaching an astonishing 41<span><math><mtext>%</mtext></math></span> in China. It is also an important molecular subtype in Western populations. Currently, targeted therapy for FOXA1 is rapidly developing. Therefore, effective identification of FOXA1 mutations is of great clinical significance. Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. To address this problem, we proposed a multi-modal deep learning network. This network can predict the FOXA1 gene mutation status using only Hematoxylin–Eosin (H&amp;E) stained pathological images and clinical data. Following five-fold cross-validation, our model achieved an optimal Area Under the receiver operating characteristic Curve (AUC) of 0.808, with an average predicted AUC of 0.74, surpassing other comparative models. Furthermore, we observed a discernible correlation between FOXA1 mutations and ISUP grade.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"106 ","pages":"Article 107739"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809425002502","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer stands as the foremost cause of cancer-related mortality among men globally, with its incidence and mortality rates increasing alongside the aging population. The FOXA1 gene assumes a pivotal role in prostate cancer pathology, which is potential as a prognostic indicator and a potent therapeutic target across various stages of prostate cancer. Mutations in FOXA1 have been shown to amplify, supplant, and reconfigure Androgen Receptor function, thereby fostering prostate cancer proliferation. FOXA1 is the most common molecular mutation type in Asian prostate cancer patients, with a mutation rate reaching an astonishing 41% in China. It is also an important molecular subtype in Western populations. Currently, targeted therapy for FOXA1 is rapidly developing. Therefore, effective identification of FOXA1 mutations is of great clinical significance. Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. To address this problem, we proposed a multi-modal deep learning network. This network can predict the FOXA1 gene mutation status using only Hematoxylin–Eosin (H&E) stained pathological images and clinical data. Following five-fold cross-validation, our model achieved an optimal Area Under the receiver operating characteristic Curve (AUC) of 0.808, with an average predicted AUC of 0.74, surpassing other comparative models. Furthermore, we observed a discernible correlation between FOXA1 mutations and ISUP grade.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
Gaussian regressed generative adversarial network based hermitian extreme gradient boosting for plant leaf disease detection Computer-aided diagnosis of spinal deformities based on keypoints detection in human back depth images Advancing cardiovascular risk prediction: A fusion of SVM models with fuzzy logic and the Sugeno integral Altered visual network modularity and communication in ADHD subtypes: Classification via source-localized EEG modules STD-YOLOv7:A small target detector for micronucleus based on YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1