Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2025-03-01 DOI:10.1016/j.carbon.2025.120182
Guisheng Zeng , Rui Zhou , Chongwen Hu , Haohan Zhao , Hanxiao Gao , Jianwen Huang , Jiaping Yu , Feng Luo , Zhongbing Wang , Chunjian Deng , Junwei He , Chunli Liu
{"title":"Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching","authors":"Guisheng Zeng ,&nbsp;Rui Zhou ,&nbsp;Chongwen Hu ,&nbsp;Haohan Zhao ,&nbsp;Hanxiao Gao ,&nbsp;Jianwen Huang ,&nbsp;Jiaping Yu ,&nbsp;Feng Luo ,&nbsp;Zhongbing Wang ,&nbsp;Chunjian Deng ,&nbsp;Junwei He ,&nbsp;Chunli Liu","doi":"10.1016/j.carbon.2025.120182","DOIUrl":null,"url":null,"abstract":"<div><div>With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120182"},"PeriodicalIF":10.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325001988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread application of lithium-ion batteries, the recycling of lithium batteries has attracted widespread attention. Unfortunately, the low economic value of spent graphite often leads to their neglect. This work proposes a novel scheme of efficient purification and high-quality regeneration of graphite from spent LIBs by low-temperature spent polyvinyl chloride (PVC) roasting-assisted leaching. Through low-temperature PVC roasting, the metal impurities of spent graphite were converted into water-soluble metal chloride, and the roasting tail gas was absorbed by water and converted into absorption liquor. After the leaching using the absorption liquor, the purity of the purified graphite exceeded 99.9%. Subsequently, the material was reheated at 1000°C to produce regenerated graphite. The material structure, including interlayer spacing and surface morphology, were significantly repaired, aligning with those of commercial graphite. The cyclic stability had been powerfully promoted, after 500 cycles at 1 C, the specific capacity of regenerated graphite remained at 111.5 mAh/g, with a retention rate of 75% (spent graphite was 43.4 mAh/g, 33%) and a coulombic efficiency exceeding 99%, demonstrating good rate performance and cycling stability. This technology not only reduces the regeneration costs of graphite materials but also achieves environmental benefits through the principle of “treating waste with waste”.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Recycling of graphite from spent lithium–ion batteries via low-temperature polyvinyl chloride roasting-assisted leaching Flexible rubber-based nanocomposite with superior electromagnetic interference shielding and joule heating Preparation of continuous large-diameter mesophase pitch-based carbon fiber with good weavability and potential ultra-high thermal conductivity Fabrication of silver-based metal-organic framework/graphene oxide composites hydrogels with anti-fouling and self-healing performance Materials property changes in ETU-10 graphite due to neutron irradiation at elevated temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1