Yanguo Hou , Chenbao Wen , Kuisheng Liu , Jinsong Duan , Haojun Sun , Yanlin Guo
{"title":"Local and global buckling prevention design of transformed triangular corrugated plates under shear and bending","authors":"Yanguo Hou , Chenbao Wen , Kuisheng Liu , Jinsong Duan , Haojun Sun , Yanlin Guo","doi":"10.1016/j.tws.2025.113135","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the local and global buckling behavior of Transformed Triangular Corrugated Steel Plates (TT-CSP) under bending and shear forces. Theoretical derivations and numerical analyses are employed to establish formulas for the elastic local and global buckling loads. The effects of TT-CSP aspect ratio, fold plate width ratio, TT-CSP thickness, and corrugation folding angle on buckling behavior are examined. A design method for preventing local and global buckling in TT-CSPs is developed based on elastic buckling load and ultimate strength, validated through numerical analyses. The results indicate that the vertical boundaries of TT-CSP do not satisfy the plane assumption, significantly reducing the elastic buckling load and ultimate strength. The width ratio of the main-plate to the sub-plate is identified as the most critical factor affecting the local buckling load. The thickness of TT-CSPs influences shear deformation, with greater thickness leading to a reduction in the local buckling coefficient, whereas corrugation folding angle have a limited impact. Additionally, the limits of the normalized width-to-height ratio for bending are found to be more stringent than those for shear.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"211 ","pages":"Article 113135"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823125002290","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the local and global buckling behavior of Transformed Triangular Corrugated Steel Plates (TT-CSP) under bending and shear forces. Theoretical derivations and numerical analyses are employed to establish formulas for the elastic local and global buckling loads. The effects of TT-CSP aspect ratio, fold plate width ratio, TT-CSP thickness, and corrugation folding angle on buckling behavior are examined. A design method for preventing local and global buckling in TT-CSPs is developed based on elastic buckling load and ultimate strength, validated through numerical analyses. The results indicate that the vertical boundaries of TT-CSP do not satisfy the plane assumption, significantly reducing the elastic buckling load and ultimate strength. The width ratio of the main-plate to the sub-plate is identified as the most critical factor affecting the local buckling load. The thickness of TT-CSPs influences shear deformation, with greater thickness leading to a reduction in the local buckling coefficient, whereas corrugation folding angle have a limited impact. Additionally, the limits of the normalized width-to-height ratio for bending are found to be more stringent than those for shear.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.