Patrick M. Blies , Sophia Keller , Ulrich Kuenzer , Yassine El Manyari , Franz Maier , Markus G.R. Sause , Marcel Wasserer , Roland M. Hinterhölzl
{"title":"Towards the automation of woven fabric draping via reinforcement learning and Extended Position Based Dynamics","authors":"Patrick M. Blies , Sophia Keller , Ulrich Kuenzer , Yassine El Manyari , Franz Maier , Markus G.R. Sause , Marcel Wasserer , Roland M. Hinterhölzl","doi":"10.1016/j.jmapro.2025.02.063","DOIUrl":null,"url":null,"abstract":"<div><div>The draping process in the preforming stage of composite manufacturing is very cost- and time-expensive and requires substantial manual labor. One strategy towards automation is the use of collaborative robots. Recent advances in AI have made it possible to train robots on difficult real-world tasks with reinforcement learning. However, training a robot using reinforcement learning is practically challenging and leveraging simulation is often the only option to use reinforcement learning in real-world settings at all. Existing FE models, which are commonly used for optimization of preforming processes, are too slow for reinforcement learning training. We addressed this issue by developing an XPBD-based surrogate model, drastically reducing simulation times compared to a classic FE model. With the achieved speedup, the training of a reinforcement learning agent became feasible and a draping trajectory could successfully be transferred to a real-world cobot, demonstrating the potential and capabilities of this innovative approach.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"141 ","pages":"Pages 336-350"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525002208","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The draping process in the preforming stage of composite manufacturing is very cost- and time-expensive and requires substantial manual labor. One strategy towards automation is the use of collaborative robots. Recent advances in AI have made it possible to train robots on difficult real-world tasks with reinforcement learning. However, training a robot using reinforcement learning is practically challenging and leveraging simulation is often the only option to use reinforcement learning in real-world settings at all. Existing FE models, which are commonly used for optimization of preforming processes, are too slow for reinforcement learning training. We addressed this issue by developing an XPBD-based surrogate model, drastically reducing simulation times compared to a classic FE model. With the achieved speedup, the training of a reinforcement learning agent became feasible and a draping trajectory could successfully be transferred to a real-world cobot, demonstrating the potential and capabilities of this innovative approach.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.