Hybrid projective synchronization of complex-valued memristive neural networks via concise prescribed-time control strategies

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Physica A: Statistical Mechanics and its Applications Pub Date : 2025-03-01 DOI:10.1016/j.physa.2025.130465
Hao Pu , Fengjun Li , Qingyun Wang , Jie Ran
{"title":"Hybrid projective synchronization of complex-valued memristive neural networks via concise prescribed-time control strategies","authors":"Hao Pu ,&nbsp;Fengjun Li ,&nbsp;Qingyun Wang ,&nbsp;Jie Ran","doi":"10.1016/j.physa.2025.130465","DOIUrl":null,"url":null,"abstract":"<div><div>This article aims to consider the prescribed-time hybrid projective synchronization of fully complex-valued memristive delayed neural networks with discontinuous activation. Above all, a new prescribed-time stability lemma is established, of which the settling time is directly a parameter of the auxiliary function and the conservatism of the conditions is reduced. Unlike common research methods, to simplify the operation, the complex-valued memristive neural network model is converted into one with uncertain parameters in view of the convex analysis approach. Subsequently, applying Filippov’s solution theory, prescribed-time stability theory, inequality techniques, and non-separation method, several novel and concise sufficient criteria are established to ensure the considered systems achieve prescribed-time synchronization by designing some controllers. Additionally, unlike common power-law type prescribed-time controllers, the ones designed in this paper are simpler because they do not involve sign function and time-delay term and have relatively fewer terms. Especially, one of their control gains is a time variable rather than a constant. And the prescribed synchronization time is independent of any initial values and parameters of the system, and can be preset arbitrarily according to actual needs. Compared with existing works, the hybrid projective coefficients of this paper are complex-valued that can be adjusted rather than real-valued, and projective synchronization, complete synchronization and anti-synchronization are its special cases. Eventually, numerical simulation results are furnished to manifest the effectiveness of the acquired theoretical outcomes.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"665 ","pages":"Article 130465"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125001177","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to consider the prescribed-time hybrid projective synchronization of fully complex-valued memristive delayed neural networks with discontinuous activation. Above all, a new prescribed-time stability lemma is established, of which the settling time is directly a parameter of the auxiliary function and the conservatism of the conditions is reduced. Unlike common research methods, to simplify the operation, the complex-valued memristive neural network model is converted into one with uncertain parameters in view of the convex analysis approach. Subsequently, applying Filippov’s solution theory, prescribed-time stability theory, inequality techniques, and non-separation method, several novel and concise sufficient criteria are established to ensure the considered systems achieve prescribed-time synchronization by designing some controllers. Additionally, unlike common power-law type prescribed-time controllers, the ones designed in this paper are simpler because they do not involve sign function and time-delay term and have relatively fewer terms. Especially, one of their control gains is a time variable rather than a constant. And the prescribed synchronization time is independent of any initial values and parameters of the system, and can be preset arbitrarily according to actual needs. Compared with existing works, the hybrid projective coefficients of this paper are complex-valued that can be adjusted rather than real-valued, and projective synchronization, complete synchronization and anti-synchronization are its special cases. Eventually, numerical simulation results are furnished to manifest the effectiveness of the acquired theoretical outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
期刊最新文献
Dynamical phase transitions in two-dimensional Brownian matter The collision-avoiding flocking of a Cucker–Smale model with pinning control and external perturbation Hybrid projective synchronization of complex-valued memristive neural networks via concise prescribed-time control strategies Traffic flow phenomena in large sporting events – empirical analysis and macroscopic simulation of the Vasaloppet Time–frequency analysis with the q-Gaussian W transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1