{"title":"Ensemble Learning for Precise State-of-Charge Estimation in Electric Vehicles Lithium-Ion Batteries Considering Uncertainty","authors":"Aya Haraz;Khalid Abualsaud;Ahmed M. Massoud","doi":"10.1109/ACCESS.2025.3539792","DOIUrl":null,"url":null,"abstract":"Accurate state-of-charge (SoC) estimation is crucial for enhancing the performance, longevity, safety, and reliability of lithium-ion batteries (LiBs) in electric vehicles (EVs). This study presents a comprehensive machine learning (ML)-based approach for SoC estimation of EV LiBs, addressing the challenges of model reliability, uncertainty, and real-world data variability. To ensure the model’s robustness and generalizability, preprocessing techniques, including normalization and scaling, were employed alongside rigorous cross-validation methods. A well-structured ML pipeline was developed to integrate these processes, optimizing the entire model development cycle for efficiency and practical implementation. In the ML pipeline, we utilized Extra Trees Regressor (ETR) and Light Gradient Boosting Machine (LightGBM) and proposed an ensemble model, combining the strengths of ETR and LightGBM, namely ETR-GBM. We benchmarked the model’s performance against other ML models, such as CatBoost and Random Forest (RF). Under uncertain conditions, the proposed model emphasized its reliability and robustness, and its conclusions underscored the efficacy of the SoC estimation approach. The ETR-GBM consistently outperforms the individual models (ETR, LightGBM, XGBoost, CatBoost, Support Vector Regression (SVR), Random Forest (RF), and Bayesian) when noise is added to the training dataset. With a noise standard deviation of 0.1, the ETR-GBM demonstrated superior performance, achieving a Root Mean Square Error (RMSE) of 0.41%, surpassing the individual models, which exhibited RMSE values ranging from 0.85% to 0.91%.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"37990-38001"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904247","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904247/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate state-of-charge (SoC) estimation is crucial for enhancing the performance, longevity, safety, and reliability of lithium-ion batteries (LiBs) in electric vehicles (EVs). This study presents a comprehensive machine learning (ML)-based approach for SoC estimation of EV LiBs, addressing the challenges of model reliability, uncertainty, and real-world data variability. To ensure the model’s robustness and generalizability, preprocessing techniques, including normalization and scaling, were employed alongside rigorous cross-validation methods. A well-structured ML pipeline was developed to integrate these processes, optimizing the entire model development cycle for efficiency and practical implementation. In the ML pipeline, we utilized Extra Trees Regressor (ETR) and Light Gradient Boosting Machine (LightGBM) and proposed an ensemble model, combining the strengths of ETR and LightGBM, namely ETR-GBM. We benchmarked the model’s performance against other ML models, such as CatBoost and Random Forest (RF). Under uncertain conditions, the proposed model emphasized its reliability and robustness, and its conclusions underscored the efficacy of the SoC estimation approach. The ETR-GBM consistently outperforms the individual models (ETR, LightGBM, XGBoost, CatBoost, Support Vector Regression (SVR), Random Forest (RF), and Bayesian) when noise is added to the training dataset. With a noise standard deviation of 0.1, the ETR-GBM demonstrated superior performance, achieving a Root Mean Square Error (RMSE) of 0.41%, surpassing the individual models, which exhibited RMSE values ranging from 0.85% to 0.91%.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.