VMG: Rethinking U-Net Architecture for Video Super-Resolution

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-11-21 DOI:10.1109/TBC.2024.3486967
Jun Tang;Lele Niu;Linlin Liu;Hang Dai;Yong Ding
{"title":"VMG: Rethinking U-Net Architecture for Video Super-Resolution","authors":"Jun Tang;Lele Niu;Linlin Liu;Hang Dai;Yong Ding","doi":"10.1109/TBC.2024.3486967","DOIUrl":null,"url":null,"abstract":"The U-Net architecture has exhibited significant efficacy across various vision tasks, yet its adaptation for Video Super-Resolution (VSR) remains underexplored. While the Video Restoration Transformer (VRT) introduced U-Net into the VSR domain, it poses challenges due to intricate design and substantial computational overhead. In this paper, we present VMG, a streamlined framework tailored for VSR. Through empirical analysis, we identify the crucial stages of the U-Net architecture contributing to performance enhancement in VSR tasks. Our optimized architecture substantially reduces model parameters and complexity while improving performance. Additionally, we introduce two key modules, namely the Gated MLP-like Mixer (GMM) and the Flow-Guided cross-attention Mixer (FGM), designed to enhance spatial and temporal feature aggregation. GMM dynamically encodes spatial correlations with linear complexity in space and time, and FGM leverages optical flow to capture motion variation and implement sparse attention to efficiently aggregate temporally related information. Extensive experiments demonstrate that VMG achieves nearly 70% reduction in GPU memory usage, 30% fewer parameters, and 10% lower computational complexity (FLOPs) compared to VRT, while yielding highly competitive or superior results across four benchmark datasets. Qualitative assessments reveal VMG’s ability to preserve remarkable details and sharp structures in the reconstructed videos. The code and pre-trained models are available at <uri>https://github.com/EasyVision-Ton/VMG</uri>.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"334-349"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10762902/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The U-Net architecture has exhibited significant efficacy across various vision tasks, yet its adaptation for Video Super-Resolution (VSR) remains underexplored. While the Video Restoration Transformer (VRT) introduced U-Net into the VSR domain, it poses challenges due to intricate design and substantial computational overhead. In this paper, we present VMG, a streamlined framework tailored for VSR. Through empirical analysis, we identify the crucial stages of the U-Net architecture contributing to performance enhancement in VSR tasks. Our optimized architecture substantially reduces model parameters and complexity while improving performance. Additionally, we introduce two key modules, namely the Gated MLP-like Mixer (GMM) and the Flow-Guided cross-attention Mixer (FGM), designed to enhance spatial and temporal feature aggregation. GMM dynamically encodes spatial correlations with linear complexity in space and time, and FGM leverages optical flow to capture motion variation and implement sparse attention to efficiently aggregate temporally related information. Extensive experiments demonstrate that VMG achieves nearly 70% reduction in GPU memory usage, 30% fewer parameters, and 10% lower computational complexity (FLOPs) compared to VRT, while yielding highly competitive or superior results across four benchmark datasets. Qualitative assessments reveal VMG’s ability to preserve remarkable details and sharp structures in the reconstructed videos. The code and pre-trained models are available at https://github.com/EasyVision-Ton/VMG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Publication Information Digital Entity Management Methodology for Digital Twin Implementation: Concept, Definition, and Examples TV 3.0: An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1