From Pixels to Rich-Nodes: A Cognition-Inspired Framework for Blind Image Quality Assessment

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Broadcasting Pub Date : 2024-10-07 DOI:10.1109/TBC.2024.3464418
Tian He;Lin Shi;Wenjia Xu;Yu Wang;Weijie Qiu;Houbang Guo;Zhuqing Jiang
{"title":"From Pixels to Rich-Nodes: A Cognition-Inspired Framework for Blind Image Quality Assessment","authors":"Tian He;Lin Shi;Wenjia Xu;Yu Wang;Weijie Qiu;Houbang Guo;Zhuqing Jiang","doi":"10.1109/TBC.2024.3464418","DOIUrl":null,"url":null,"abstract":"Blind image quality assessment (BIQA) is a subjective perception-driven task, which necessitates assessment results consistent with human cognition. The human cognitive system inherently involves both separation and integration mechanisms. Recent works have witnessed the success of deep learning methods in separating distortion features. Nonetheless, traditional deep-learning-based BIQA methods predominantly depend on fixed topology to mimic the information integration in the brain, which gives rise to scale sensitivity and low flexibility. To handle this challenge, we delve into the dynamic interactions among neurons and propose a cognition-inspired BIQA model. Drawing insights from the rich club structure in network neuroscience, a graph-inspired feature integrator is devised to reconstruct the network topology. Specifically, we argue that the activity of individual neurons (pixels) tends to exhibit a random fluctuation with ambiguous meaning, while clear and coherent cognition arises from neurons with high connectivity (rich-nodes). Therefore, a self-attention mechanism is employed to establish strong semantic associations between pixels and rich-nodes. Subsequently, we design intra- and inter-layer graph structures to promote the feature interaction across spatial and scale dimensions. Such dynamic circuits endow the BIQA method with efficient, flexible, and robust information processing capabilities, so as to achieve more human-subjective assessment results. Moreover, since the limited samples in existing IQA datasets are prone to model overfitting, we devise two prior hypotheses: frequency prior and ranking prior. The former stepwise augments high-frequency components that reflect the distortion degree during the multilevel feature extraction, while the latter seeks to motivate the model’s in-depth comprehension of differences in sample quality. Extensive experiments on five publicly datasets reveal that the proposed algorithm achieves competitive results.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"229-239"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706639","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706639/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Blind image quality assessment (BIQA) is a subjective perception-driven task, which necessitates assessment results consistent with human cognition. The human cognitive system inherently involves both separation and integration mechanisms. Recent works have witnessed the success of deep learning methods in separating distortion features. Nonetheless, traditional deep-learning-based BIQA methods predominantly depend on fixed topology to mimic the information integration in the brain, which gives rise to scale sensitivity and low flexibility. To handle this challenge, we delve into the dynamic interactions among neurons and propose a cognition-inspired BIQA model. Drawing insights from the rich club structure in network neuroscience, a graph-inspired feature integrator is devised to reconstruct the network topology. Specifically, we argue that the activity of individual neurons (pixels) tends to exhibit a random fluctuation with ambiguous meaning, while clear and coherent cognition arises from neurons with high connectivity (rich-nodes). Therefore, a self-attention mechanism is employed to establish strong semantic associations between pixels and rich-nodes. Subsequently, we design intra- and inter-layer graph structures to promote the feature interaction across spatial and scale dimensions. Such dynamic circuits endow the BIQA method with efficient, flexible, and robust information processing capabilities, so as to achieve more human-subjective assessment results. Moreover, since the limited samples in existing IQA datasets are prone to model overfitting, we devise two prior hypotheses: frequency prior and ranking prior. The former stepwise augments high-frequency components that reflect the distortion degree during the multilevel feature extraction, while the latter seeks to motivate the model’s in-depth comprehension of differences in sample quality. Extensive experiments on five publicly datasets reveal that the proposed algorithm achieves competitive results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
期刊最新文献
Table of Contents IEEE Transactions on Broadcasting Information for Authors IEEE Transactions on Broadcasting Publication Information Digital Entity Management Methodology for Digital Twin Implementation: Concept, Definition, and Examples TV 3.0: An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1