{"title":"Performance Analysis: Discovering Semi-Markov Models From Event Logs","authors":"Anna Kalenkova;Lewis Mitchell;Matthew Roughan","doi":"10.1109/ACCESS.2025.3546033","DOIUrl":null,"url":null,"abstract":"Process mining is a well-established discipline of data analysis focused on the discovery of process models from information systems’ event logs. Recently, an emerging subarea of process mining, known as stochastic process discovery, has started to evolve. Stochastic process discovery considers frequencies of events in the event data and allows for a more comprehensive analysis. In particular, when the durations of activities are presented in the event log, performance characteristics of the discovered stochastic models can be analyzed, e.g., the overall process execution time can be estimated. Existing performance analysis techniques usually discover stochastic process models from event data, and then simulate these models to evaluate their execution times. These methods rely on empirical approaches. This paper proposes analytical techniques for performance analysis that allow for the derivation of statistical characteristics of the overall processes’ execution times in the presence of arbitrary time distributions of events modeled by semi-Markov processes. The proposed methods include express analysis, focused on the mean execution time estimation, and full analysis techniques that build probability density functions (PDFs) of process execution times in both continuous and discrete forms. These methods are implemented and tested on real-world event data, demonstrating their potential for what-if analysis by providing solutions without resorting to simulation. Specifically, we demonstrated that the discrete approach is more time-efficient for small duration support sizes compared to the simulation technique. Furthermore, we showed that the continuous approach, with PDFs represented as Mixtures of Gaussian Models (GMMs), facilitates the discovery of more compact and interpretable models.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"38035-38053"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10904251","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904251/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Process mining is a well-established discipline of data analysis focused on the discovery of process models from information systems’ event logs. Recently, an emerging subarea of process mining, known as stochastic process discovery, has started to evolve. Stochastic process discovery considers frequencies of events in the event data and allows for a more comprehensive analysis. In particular, when the durations of activities are presented in the event log, performance characteristics of the discovered stochastic models can be analyzed, e.g., the overall process execution time can be estimated. Existing performance analysis techniques usually discover stochastic process models from event data, and then simulate these models to evaluate their execution times. These methods rely on empirical approaches. This paper proposes analytical techniques for performance analysis that allow for the derivation of statistical characteristics of the overall processes’ execution times in the presence of arbitrary time distributions of events modeled by semi-Markov processes. The proposed methods include express analysis, focused on the mean execution time estimation, and full analysis techniques that build probability density functions (PDFs) of process execution times in both continuous and discrete forms. These methods are implemented and tested on real-world event data, demonstrating their potential for what-if analysis by providing solutions without resorting to simulation. Specifically, we demonstrated that the discrete approach is more time-efficient for small duration support sizes compared to the simulation technique. Furthermore, we showed that the continuous approach, with PDFs represented as Mixtures of Gaussian Models (GMMs), facilitates the discovery of more compact and interpretable models.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.