Zhaoqing Pan;Guoyu Zhang;Bo Peng;Jianjun Lei;Haoran Xie;Fu Lee Wang;Nam Ling
{"title":"JND-LIC: Learned Image Compression via Just Noticeable Difference for Human Visual Perception","authors":"Zhaoqing Pan;Guoyu Zhang;Bo Peng;Jianjun Lei;Haoran Xie;Fu Lee Wang;Nam Ling","doi":"10.1109/TBC.2024.3464413","DOIUrl":null,"url":null,"abstract":"Existing human visual perception-oriented image compression methods well maintain the perceptual quality of compressed images, but they may introduce fake details into the compressed images, and cannot dynamically improve the perceptual rate-distortion performance at the pixel level. To address these issues, a just noticeable difference (JND)-based learned image compression (JND-LIC) method is proposed for human visual perception in this paper, in which a weight-shared model is used to extract image features and JND features, and the learned JND features are utilized as perceptual prior knowledge to assist the image coding process. In order to generate a highly compact image feature representation, a JND-based feature transform module is proposed to model the pixel-to-pixel masking correlation between the image features and the JND features. Furthermore, inspired by eye movement research that the human visual system perceives image degradation unevenly, a JND-guided quantization mechanism is proposed for the entropy coding, which adjusts the quantization step of each pixel to further eliminate perceptual redundancies. Extensive experimental results show that our proposed JND-LIC significantly improves the perceptual quality of compressed images with fewer coding bits compared to state-of-the-art learned image compression methods. Additionally, the proposed method can be flexibly integrated with various advanced learned image compression methods, and has robust generalization capabilities to improve the efficiency of perceptual coding.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"217-228"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697103/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Existing human visual perception-oriented image compression methods well maintain the perceptual quality of compressed images, but they may introduce fake details into the compressed images, and cannot dynamically improve the perceptual rate-distortion performance at the pixel level. To address these issues, a just noticeable difference (JND)-based learned image compression (JND-LIC) method is proposed for human visual perception in this paper, in which a weight-shared model is used to extract image features and JND features, and the learned JND features are utilized as perceptual prior knowledge to assist the image coding process. In order to generate a highly compact image feature representation, a JND-based feature transform module is proposed to model the pixel-to-pixel masking correlation between the image features and the JND features. Furthermore, inspired by eye movement research that the human visual system perceives image degradation unevenly, a JND-guided quantization mechanism is proposed for the entropy coding, which adjusts the quantization step of each pixel to further eliminate perceptual redundancies. Extensive experimental results show that our proposed JND-LIC significantly improves the perceptual quality of compressed images with fewer coding bits compared to state-of-the-art learned image compression methods. Additionally, the proposed method can be flexibly integrated with various advanced learned image compression methods, and has robust generalization capabilities to improve the efficiency of perceptual coding.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”