Lignocellulose saccharification: historical insights and recent industrial advancements towards 2nd generation sugars†

Jorge Bueno Moron, Gerard P. M. van Klink and Gert-Jan M. Gruter
{"title":"Lignocellulose saccharification: historical insights and recent industrial advancements towards 2nd generation sugars†","authors":"Jorge Bueno Moron, Gerard P. M. van Klink and Gert-Jan M. Gruter","doi":"10.1039/D4SU00600C","DOIUrl":null,"url":null,"abstract":"<p >This study explores the initial industrial development of saccharification technologies, with a primary focus on hydrochloric acid (HCl) saccharification of biomass, particularly wood chips. It traces the historical progress from early 20th-century research to modern advancements, emphasizing the challenges, failures and successes in scaling up these processes. The work details the structural composition of wood, <em>i.e.</em> cellulose, hemicellulose, and lignin, and explains the mechanisms of their hydrolysis. Additionally, it reviews various methods for hydrolyzing wood chips into saccharides, including besides HCl-based methods also sulfuric acid hydrolysis, as well as other methods such as enzymatic hydrolysis and more recent technologies. This review highlights the industrial attempts to bring these technologies to scale, providing insights into the technological advancements and hurdles faced. As developers of Avantium's DAWN Technology, we introduce our optimized hydrochloric acid saccharification process, which enhances efficiency and addresses historical challenges. This comprehensive overview not only documents the historical and technical aspects of biomass saccharification but also underscores the importance of continued innovation in this field.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1170-1211"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00600c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00600c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the initial industrial development of saccharification technologies, with a primary focus on hydrochloric acid (HCl) saccharification of biomass, particularly wood chips. It traces the historical progress from early 20th-century research to modern advancements, emphasizing the challenges, failures and successes in scaling up these processes. The work details the structural composition of wood, i.e. cellulose, hemicellulose, and lignin, and explains the mechanisms of their hydrolysis. Additionally, it reviews various methods for hydrolyzing wood chips into saccharides, including besides HCl-based methods also sulfuric acid hydrolysis, as well as other methods such as enzymatic hydrolysis and more recent technologies. This review highlights the industrial attempts to bring these technologies to scale, providing insights into the technological advancements and hurdles faced. As developers of Avantium's DAWN Technology, we introduce our optimized hydrochloric acid saccharification process, which enhances efficiency and addresses historical challenges. This comprehensive overview not only documents the historical and technical aspects of biomass saccharification but also underscores the importance of continued innovation in this field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1