A review on bio-inspired nanoparticles and their impact on membrane applications

Sinki Puri, Swathi Divakar, K. Pramoda, B. M. Praveen and Mahesh Padaki
{"title":"A review on bio-inspired nanoparticles and their impact on membrane applications","authors":"Sinki Puri, Swathi Divakar, K. Pramoda, B. M. Praveen and Mahesh Padaki","doi":"10.1039/D4SU00460D","DOIUrl":null,"url":null,"abstract":"<p >Incorporation of nanoparticles into the membrane matrix plays a pivotal role in water purification and treatment. In this review, the recent advances in coupling green nanoparticles, encompassing diverse materials, such as metallic-, metal oxide-, and carbon-based nanoparticles, for tailoring NPs for specific membrane applications are elucidated. The green approach involves the synthesis of nanoparticles using plant extracts, enabling precise control over the size, shape, and surface properties of NPs. The incorporation of NPs improves the underlying hydrophilicity, antifouling properties, mechanical strength, and selectivity of the membrane matrix for various separations, including water purification, desalination, and wastewater treatment. This review also addresses the potential challenges in utilizing green-synthesized nanoparticles in membrane technology for targeted applications. Factors such as scalability, stability, and long-term environmental impact are assessed to ensure the practical viability and sustainability of this approach. In conclusion, the integration of green-synthesized nanoparticles in membrane applications represents a sustainable and innovative paradigm in the field of membrane technology. This approach not only augments the performance of membranes but also aligns with global efforts towards eco-friendly and sustainable practices in synthesis of materials and environmental remediation. This review encourages further research and development in this area, paving the way for greener and more efficient membrane-based separation processes.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1212-1233"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00460d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00460d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporation of nanoparticles into the membrane matrix plays a pivotal role in water purification and treatment. In this review, the recent advances in coupling green nanoparticles, encompassing diverse materials, such as metallic-, metal oxide-, and carbon-based nanoparticles, for tailoring NPs for specific membrane applications are elucidated. The green approach involves the synthesis of nanoparticles using plant extracts, enabling precise control over the size, shape, and surface properties of NPs. The incorporation of NPs improves the underlying hydrophilicity, antifouling properties, mechanical strength, and selectivity of the membrane matrix for various separations, including water purification, desalination, and wastewater treatment. This review also addresses the potential challenges in utilizing green-synthesized nanoparticles in membrane technology for targeted applications. Factors such as scalability, stability, and long-term environmental impact are assessed to ensure the practical viability and sustainability of this approach. In conclusion, the integration of green-synthesized nanoparticles in membrane applications represents a sustainable and innovative paradigm in the field of membrane technology. This approach not only augments the performance of membranes but also aligns with global efforts towards eco-friendly and sustainable practices in synthesis of materials and environmental remediation. This review encourages further research and development in this area, paving the way for greener and more efficient membrane-based separation processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Nanomaterials and their applications on bio-inspired wearable electronics.
IF 3.5 4区 材料科学NanotechnologyPub Date : 2021-09-01 DOI: 10.1088/1361-6528/abe6c7
Jiean Li, Ming Xin, Zhong Ma, Yi Shi, Lijia Pan
A Review on Bio-inspired Synthesis of Silver Nanoparticles: Their Antimicrobial Efficacy and Toxicity
IF 0 Engineered SciencePub Date : 2021-06-07 DOI: 10.30919/ES8D479
S. Prasad, S. Teli, J. Ghosh, N. Prasad, V. Shaikh, G. Nazeruddin, A. Al‐Sehemi, Imran Patel, Y. Shaikh
Bio-Inspired Synthesis of Bimetallic Nanoparticles and Their Applications: Review
IF 0 Nano ProgressPub Date : 2023-03-10 DOI: 10.36686/ariviyal.np.2023.05.09.041
Anjali Singh, Vijay Devra
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1