Influence of the Composition and Morphology of Dielectric Mirrors of Lidar Systems on their Optical Breakdown Threshold

IF 0.9 Q4 OPTICS Atmospheric and Oceanic Optics Pub Date : 2025-03-04 DOI:10.1134/S1024856024701203
M. M. Zinovev, V. S. Kuznetsov, N. N. Yudin, E. S. Slyunko, S. N. Podzyvalov, A. B. Lysenko, A. Yu. Kalsin, A. Sh. Gabdrakhmanov, D. V. Vlasov
{"title":"Influence of the Composition and Morphology of Dielectric Mirrors of Lidar Systems on their Optical Breakdown Threshold","authors":"M. M. Zinovev,&nbsp;V. S. Kuznetsov,&nbsp;N. N. Yudin,&nbsp;E. S. Slyunko,&nbsp;S. N. Podzyvalov,&nbsp;A. B. Lysenko,&nbsp;A. Yu. Kalsin,&nbsp;A. Sh. Gabdrakhmanov,&nbsp;D. V. Vlasov","doi":"10.1134/S1024856024701203","DOIUrl":null,"url":null,"abstract":"<p>The influence of the morphology and composition of thin films which form the structure of dielectric mirrors of optical cavities of coherent sources for lidars is studied. TiO<sub>2</sub>/SiO<sub>2</sub> and ZnS/YbF<sub>3</sub> dielectric mirrors were simulated in Optilayer software; their morphological features were determined with the use of electron and atomic force microscopy. Interference coating of the calculated structure was deposited onto a substrate by the ion-beam sputtering method. The Nd:YAG laser- (wavelength of 1064 nm) induced breakdown threshold was found to be 4 J/cm<sup>2</sup> for a TiO<sub>2</sub>/SiO<sub>2</sub> mirror and 3.2 J/cm<sup>2</sup> for a ZnS/YbF<sub>3</sub> mirror. The result can be useful for manufacturing dielectric mirrors with high optical breakdown thresholds for both sources and detectors of lidar systems.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 6","pages":"932 - 937"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024701203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of the morphology and composition of thin films which form the structure of dielectric mirrors of optical cavities of coherent sources for lidars is studied. TiO2/SiO2 and ZnS/YbF3 dielectric mirrors were simulated in Optilayer software; their morphological features were determined with the use of electron and atomic force microscopy. Interference coating of the calculated structure was deposited onto a substrate by the ion-beam sputtering method. The Nd:YAG laser- (wavelength of 1064 nm) induced breakdown threshold was found to be 4 J/cm2 for a TiO2/SiO2 mirror and 3.2 J/cm2 for a ZnS/YbF3 mirror. The result can be useful for manufacturing dielectric mirrors with high optical breakdown thresholds for both sources and detectors of lidar systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
42.90%
发文量
84
期刊介绍: Atmospheric and Oceanic Optics  is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.
期刊最新文献
Influence of the Composition and Morphology of Dielectric Mirrors of Lidar Systems on their Optical Breakdown Threshold Optical Model of a Cirrus Cloud Consisting of Hollow Ice Hexagonal Columns for Lidar Applications Characterization of Greenhouse Gas Emissions from the Territory of the St. Petersburg Agglomeration, Russia, Based on the Results of EMME-2019 and EMME-2020 Mobile Observational Campaigns Statistical Simulation of Spaceborne Lidar Pulse Propagation in Cirrus Clouds Taking into Account Multiple Scattering Variability of the Surface Electric Field under the Influence of Meteorological Conditions According to Observations in Tomsk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1